Moving toward a new era of ecosystem science

Guirui Yu , Shilong Piao , Yangjian Zhang , Lingli Liu , Jian Peng , Shuli Niu

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) : 151 -162.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (3) :151 -162. DOI: 10.1016/j.geosus.2021.06.004
research-article

Moving toward a new era of ecosystem science

Author information +
History +
PDF

Abstract

Ecosystem is a fundamental organizational unit of the biosphere in which biological communities interact with their non-biological environment through energy flows and material cycles. Ecosystem science is the study of patterns, processes, and services of ecosystems. Since the 1990s, rising concerns regarding global climate change, biodiversity loss, ecosystem degradation, and sustainability of the human-dominated biosphere have stimulated the growth of ecosystem science, which is expected to provide systematic solutions to many of these major issues facing human societies. This paper provides a comprehensive review of the current progress in ecosystem science and identifies some key research challenges facing this discipline. We demonstrate that a key feature of the current progress in ecosystem science is its evolution from primarily theoretical explorations toward more systematic, integrative and application-oriented studies. Specifically, five major changes in the discipline over the past several decades can be identified. These include: (1) the expansion of the primary goal from understanding nature to include human activities; (2) the broadening of the research focus from single ecosystem types to macro-ecosystems comprising multiple regional ecosystems; (3) the shifting of research methods from small-scale observations and experiments to large-scale observations, network experiments, and model simulations; (4) the increasing attention to comprehensive integration of ecosystem components, processes, and scales; and (5) the shifting from a primarily biology-oriented focus to an integrated multi-disciplinary scientific field. While ecosystem science still faces many challenges in the future, these directional changes, along with the rapidly enriched research tools and data acquisition capabilities, lay a promising ground for the discipline’s future as a fundamental scientific basis for solving many environmental challenges facing human societies.

Keywords

Large-scale macro-systems / Sustainable development / Interdisciplinary research / Ecosystem science

Cite this article

Download citation ▾
Guirui Yu, Shilong Piao, Yangjian Zhang, Lingli Liu, Jian Peng, Shuli Niu. Moving toward a new era of ecosystem science. Geography and Sustainability, 2021, 2(3): 151-162 DOI:10.1016/j.geosus.2021.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Alberti, M., Marzluff, J.M., Shulenberger, E., Bradley, G., Ryan, C., Zumbrunnen, C., 2003. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience 53 (12), 1169-1179.

[2]

Alkama, R., Cescatti, A., 2016. Biophysical climate impacts of recent changes in global forest cover. Science 351 (6273), 600-604.

[3]

Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11 (3), 138-146.

[4]

Araújo, M.B., Rahbek, C., 2006. How does climate change affect biodiversity? Science 313 (5792), 1396-1397.

[5]

Aronova, E., Baker, K.S., Oreskes, N., 2010. Big science and big data in biology: From the international geophysical year through the international biological program to the long term ecological research (LTER) network, 1957-present. Hist. Stud. Nat. Sci. 40 (2), 183-224.

[6]

Bai, P., Liu, X., Zhang, Y., Liu, C., 2020. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resour. Res. 56 (10) e2019WR027019.

[7]

Bardgett, R.D., Wardle, D.A., 2010. Aboveground-belowground linkages:Biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford.

[8]

Barlow, J., França, F., Gardner, T.A., Hicks, C.C., Lennox, G.D., Berenguer, E., Castello, L., Economo, E.P., Ferreira, J., Guénard, B., Leal, C.G., Isaac, V., Lees, A.C., Parr, C.L., Wilson, S.K., Young, P.J., Graham, N.A.J., 2018. The future of hyperdiverse tropical ecosystems. Nature 559, 517-526.

[9]

Bartoszek, L., Koszelnik, P., 2016. The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus 5, 1157.

[10]

Beard, J.S., 1955. The classification of tropical american vegetation-types. Ecology 36 (1), 89-100.

[11]

Bel, G., Hagberg, A., Meron, E., 2012. Gradual regime shifts in spatially extended ecosystems. Theor. Ecol. 5, 591-604.

[12]

Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., Courchamp, F., 2014. Vulnerability of biodiversity hotspots to global change. Global Ecol. Biogeogr. 23 (12), 1376-1386.

[13]

Berkes, F., Colding, J., Folke, C., 2003. Navigating social-ecological systems:Building resilience for complexity and change. Cambridge University Press, Cambridge.

[14]

Berkes, F., Folke, C., Colding, J., 1998. Linking social and ecological systems:Management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge.

[15]

Bleischwitz, R., Spataru, C., VanDeveer, S.D., Obersteiner, M., van der Voet, E., Johnson, C., Andrews-Speed, P., Boersma, T., Hoff, H., van Vuuren, D.P., 2018. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737-743.

[16]

Blewitt, J., 2017. Understanding sustainable development. Routledge, London.

[17]

Blicharska, M., Smithers, R.J., Mikusiński, G., Rönnbäck, P., Harrison, P.A., Nilsson, M., Sutherland, W.J., 2019. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083-1093.

[18]

Bonan, G., 2019. Climate change and terrestrial ecosystem modeling. Cambridge University Press, Cambridge.

[19]

Bonan, G.B., Doney, S.C., 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359 (6375), eaam8328.

[20]

Borer, E.T., Harpole, W.S., Adler, P.B., Lind, E.M., Orrock, J.L., Seabloom, E.W., Smith, M.D., 2014. Finding generality in ecology: A model for globally distributed experiments. Methods Ecol. Evol. 5 (1), 65-73.

[21]

Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D’Antonio, C.M., Defries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., Pyne, S.J., 2009. Fire in the earth system. Science 324 (5926), 481-484.

[22]

Brett, J.R., 1952. Temperature tolerance in young pacific salmon, genus oncorhynchus. Can. J. Fish. Aquat. 9 (6), 265-323.

[23]

Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., DeFries, R.S., Díaz, S., Dietz, T., Duraiappah, A.K., Oteng-Yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., Sarukhan, J., Scholes, R.J., Whyte, A., 2009. Science for managing ecosystem services: Beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. U.S.A. 106 (5), 1305-1312.

[24]

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jager, J., Mitchell, R.B., 2003. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. U.S.A. 100, 8086-8091.

[25]

Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P.A., McGuire, A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., Pace, M.L., Ryan, M.G., Running, S.W., Sala, O.E., Schlesinger, W.H., Schulze, E.D., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9 (7), 1041-1050.

[26]

Clarke, G.L., 1954. Elements of ecology. John Wiley and Sons, New York.

[27]

Clements, F.E., 1936. Nature and structure of the climax. J. Ecol. 24 (1), 252-284.

[28]

Clements, F.E., Shelford, V.E., 1939. Bio-ecology. John Wiley and Sons, New York.

[29]

Coleman, D.C., 2010. Big ecology:The emergence of ecosystem science. University of California Press, Berkeley.

[30]

Collins, S.L., Carpenter, S.R., Swinton, S.M., Orenstein, D.E., Childers, D.L., Gragson, T.L., Grimm, N.B., Grove, M., Harlan, S.L., Kaye, J.P., Knapp, A.K., Kofinas, G.P., Magnuson, J.J., McDowell, W.H., Melack, J.M., Ogden, L.A., Robertson, G.P., Smith, M.D., Whitmer, A.C., 2011. An integrated conceptual framework for long-term social-ecological research. Front. Ecol. Environ. 9, 351-357.

[31]

Cortner, H., Moote, M.A., 1999. The politics of ecosystem management. Island Press, Washington, D.C.

[32]

Daily, G.C., Matson, P.A., 2008. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. U.S.A. 105 (28), 9455-9456.

[33]

Darwin, C., Wallace, A.R., 1958. Evolution by natural selection. Cambridge University Press, Cambridge.

[34]

de Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L., 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7 (3), 260-272.

[35]

Di Castri, F., Hadley, M., Damlamian, J., 1981. Mab: The man and the biosphere program as an evolving system. Ambio 10, 52-57.

[36]

Dunbar, M.J., 1960. The evolution of stability in marine environments natural selection at the level of the ecosystem. Am. Nat. 94 (875), 129-136.

[37]

Dyer, M.I., Holland, M.M., 1988. Unesco’s man and the biosphere program. BioScience 38 (9), 635-641.

[38]

Dyksterhuis, E.J., 1949. Condition and management of range land based on quantitative ecology. J. Range. Manag. 2, 104-115.

[39]

Eckstein, O., 1958. Water resource development:The economicsof project evaluation. Harvard University Press, Cambridge.

[40]

Ehrlich, P.R., Wilson, E.O., 1991. Biodiversity studies: Science and policy. Science 253 (5021), 758-762.

[41]

Elser, J., Bennett, E., 2011. A broken biogeochemical cycle. Nature 478, 29-31.

[42]

Endter-Wada, J., Blahna, D., Krannich, R., Brunson, M., 1998. A framework for understanding social science contributions to ecosystem management. Ecol. Appl. 8 (3), 891-904.

[43]

Evans, F.C., 1956. Ecosystem as the basic unit in ecology. Science 123 (3208), 1127-1128.

[44]

Farley, S.S., Dawson, A., Goring, S.J., Williams, J.W., 2018. Situating ecology as a big-data science: Current advances, challenges, and solutions. Bioscience 68 (8), 563-576.

[45]

Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., , Y., Zeng, Y., Li, Y., Jiang, X., Wu, B., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019-1022.

[46]

Fischer-Kowalski, M., Hüttler, W., 1998. Society’s metabolism: The intellectual history of materials flow analysis, Part II, 1970-1998. J. Ind. Ecol. 2, 107-136.

[47]

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use. Science 309, 570-574.

[48]

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M., 2011. Solutions for a cultivated planet. Nature 478, 337-342.

[49]

Food and Agriculture Organization of the United Nations, 2010. Global Forest Resources Assessment 2010. FAO Forestry Paper 163. Food and Agriculture Organization of the United Nations, Rome.

[50]

Fraser, L.H., Henry, H.A.L., Carlyle, C.N., White, S.R., Beierkuhnlein, C., Cahill Jr., J.F., Casper, B.B., Cleland, E., Collins, S.L., Dukes, J.S., Knapp, A.K., Lind, E., Long, R., Luo, Y., Reich, P.B., Smith, M.D., Sternberg, M., Turkington, R., 2013. Coordinated distributed experiments: An emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11 (3), 147-155.

[51]

Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., 2008. Global change and the ecology of cities. Science 319 (5864), 756-760.

[52]

Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293-296.

[53]

Hall, N.L., Creamer, S., Anders, W., Slatyer, A., Hill, P.S., 2020. Water and health interlinkages of the sustainable development goals in remote Indigenous Australia. NPJ Clean Water 3, 10.

[54]

Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller, A.L., Duke, C.S., Porter, J.H., 2013. Big data and the future of ecology. Front. Ecol. Environ. 11 (3), 156-162.

[55]

Heywood, V.H., Watson, R.T., 1995. Global biodiversity assessment. Cambridge university press, Cambridge.

[56]

Holling, C.S., 2001. Understanding the complexity of economic, ecological, and social systems. Ecosystems 4 (5), 390-405.

[57]

Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L., O’connor, M.I., 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486 (7401), 105-108.

[58]

Hutchinson, G.E., 1953. The concept of pattern in ecology. Proc. Acad. Nat. Sci. Philadelphia. 105, 1-12.

[59]

IPCC, 2013. Climate change 2013:The physical science basis. Contribution of working group I to the Fifth assessment peport of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535.

[60]

Jetz, W., McGeoch, M.A., Guralnick, R., Ferrier, S., Beck, J., Costello, M., Fernandez, M., Geller, G.N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F.E., Pereira, H.M., Regan, E.C., Schmeller, D.S., Turak, E., 2019. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539-551.

[61]

Jetz, W., Mcpherson, J.M., Guralnick, R.P., 2012. Integrating biodiversity distribution knowledge: Toward a global map of life. Trends Ecol. Evol. 27 (3), 151-159.

[62]

Kaufmann, M.R., Graham, R.T., Boyce, D.A., Moir, W.H., Perry, L., Reynolds, R.T., Bassett, R.L., Mehlhop, P., Edminister, C.B., Block, W.M., Corn, Paul S., 1994. An ecological basis for ecosystem management. USDA Forest Service, Fort Collins, CO General Technical Report RM-GTR-246Rocky Mountain Forest and Range Experiment Station. 22 pp.

[63]

Kerr, J.T., Ostrovsky, M., 2003. From space to species: Eecological applications for remote sensing. Trends Ecol. Evol. 18 (6), 299-305.

[64]

Kroll, C., Warchold, A., Pradhan, P., 2019. Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies? Palgrave Commun 5, 140.

[65]

Kubiszewski, I., Costanza, R., Anderson, S., Sutton, P., 2017. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 26, 289-301.

[66]

Langemeyer, J., Camps-Calvet, M., Calvet-Mir, L., Barthel, S., Gómez-Baggethun, E., 2018. Stewardship of urban ecosystem services: Understanding the value(s) of urban gardens in Barcelona. Landsc. Urban Plan. 170, 79-89.

[67]

Lebel, L., Anderies, J.M., Campbell, B., Folke, C., Hatfield-Dodds, S., Hughes, T.P., Wilson, J., 2006. Governance and the capacity to manage resilience in regional social-ecological systems. Ecol. Soc. 11 (1), 19.

[68]

Levin, S.A., 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1 (5), 431-436.

[69]

Lieth, H., Whittaker, R.H., 1975. Primary productivity of the biosphere, Ecological studies 14. Springer, New York.

[70]

Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology 23 (4), 399-417.

[71]

Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., Li, S., 2015. Systems integration for global sustainability. Science 347 (6225), 1258832.

[72]

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A., 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294 (5543), 804-808.

[73]

Lubchenco, J., Olson, A.M., Brubaker, L.B., Carpenter, S.R., Holland, M.M., Hubbell, S.P., Levin, S.A., Macmahon, J.A., Matson, P.A., Melillo, J.M., Mooney, H.A., Peterson, C.H., Pulliam, H.R., Real, L.A., Regal, P.J., Risser, P.G., 1991. The sustainable biosphere initiative: An ecological research agenda: A report from the ecological society of America. Ecology 72, 371-412.

[74]

MacArthur, R.H., 1972. Geographical ecology:Patterns in the distribution of species. Harper and Row, New York.

[75]

Major, J., 1951. A functional, factorial approach to plant ecology. Ecology 32 (3), 392-412.

[76]

May, R.M., 1973. Qualitative stability in model ecosystems. Ecology 54 (3), 638-641.

[77]

May, R.M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471-477.

[78]

McGinnis, M.D., Ostrom, E., 2014. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 19 (2), 30.

[79]

Nachtomy, O., Shavit, A., Smith, J., 2002. Leibnizian organisms, nested individuals, and units of selection. Theor. Biosci. 121 (2), 205-230.

[80]

National Academies of Sciences, Engineering, and Medicine, 2020. A vision for NSF Earth sciences 2020- 2030: Earth in time. The National Academies Press, Washington, D. C.

[81]

National Research Council, 2001. Basic research opportunities in earth science. The National Academies Press, Washington, D. C.

[82]

National Research Council, 2012. New research opportunities in the earth sciences. The National Academies Press, Washington, D. C.

[83]

Niu, S., Wang, S., Wang, J., Xia, J., Yu, G., 2020. Integrative ecology in the era of big data-From observation to prediction. Sci. China Earth Sci. 63, 1429-1442.

[84]

Odum, E.P., 1971. Fundamentals of ecology, Third Edition Saunders, Philadelphia.

[85]

Odum, E.P., 1975. Diversity as a function of energy flow. In: van Dobben, W.H., Lowe-McConnell, R.H. (Eds.), Unifying Concepts in Ecology. Springer, Dordrecht, pp. 11-14.

[86]

Odum, E.P., 1977. The emergence of ecology as a new integrative discipline. Science 195 (4284), 1289-1293.

[87]

Odum, E.P., 1985. Trends expected in stressed ecosystems. BioScience 35 (7), 419-422.

[88]

Odum, H.T., Cantlon., J.E., Kornicker, L.S., 1960. An organizational hierarchy postulate for the interpretation of species-individual distributions, species entropy, ecosystem evolution, and the meaning of a species-variety index. Ecology 41 (2), 395-399.

[89]

Ostrom, E., 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325 (5939), 419-422.

[90]

Pace, M.L., Groffman, P.M., 2013. Successes, limitations, and frontiers in ecosystem science. Springer-Verlag, New York.

[91]

Peng, J., Tian, L., Zhang, Z.M., Zhao, Y., Green, S.M., Quine, T.A., Liu, H., Meersmans, J., 2020. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 46, 101199.

[92]

Peng, S.S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L.Z.X., Myneni, R.B., Yin, Y., Zeng, H., 2014. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. U.S.A. 111 (8), 2915-2919.

[93]

Piao, S.L., Fang, J.Y., Ciais, P., Peylin, P., Huang, Y., Sitch, S., Wang, T., 2009. The carbon balance of terrestrial ecosystems in China. Nature 458 (7241), 1009-1013.

[94]

Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M., 1995. The future of biodiversity. Science 269 (5222), 347-350.

[95]

Qin, Y., Höglund-Isaksson, L., Byers, E., Feng, K., Wagner, F., Peng, W., Mauzerall, D.L., 2018. Air quality-carbon-water synergies and trade-offs in China’s natural gas industry. Nat. Sustain. 1 (9), 505-511.

[96]

Rockström, J., 2016. Future earth. Science. 351 (6271) 319-319.

[97]

Rogers, P.P., Jalal, K.F., Boyd, J.A., 2007. An introduction to sustainable development. Earthscan, London.

[98]

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems. Nature 413, 591-596.

[99]

Schimel, D., Schneider, F.D., Bloom, A., Bowman, K., Cawse-Nicholson, K., Elder, C., Ferraz, A., Fisher, J., Hulley, G., Liu, J., Magney, T., Meyer, V., Miller, C., Parazoo, N., Pavlick, R., Podest, E., Saatchi, S., Stavros, N., Keller, M., Townsend, P., Zheng, T., 2019. Flux towers in the sky: Gglobal ecology from space. New Phytol. 224 (2), 570-584.

[100]

Schlesinger, W.H., Cole, J.J., Finzi, A.C., Holland, E.A., 2011. Introduction to coupled biogeochemical cycles. Front. Ecol. Environ. 9 (1), 5-8.

[101]

Schmid, B., Hector, A., Huston, M.A., Inchausti, P., Nijs, I., Leadley, P., Tilman, D., 2002. The design and analysis of biodiversity experiments. In: Loreau M., Naeem S., Inchausti P. (Biodiversity and Ecosystem Functioning.Eds.), Synthesis and Perspectives. Oxford University Press, Oxford, pp. 61-75.

[102]

Schoener, T.W., 1989. Food webs from the small to the large: The Robert H. MacArthur Award Lecture. Ecology 70 (6), 1559-1589.

[103]

Seitzinger, S.P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P., Claussen, M., Erisman, J.W., Kiefer, T., Lancelot, C., Monks, P.S., Smyth, K., Syvitski, J., Uematsu, M., 2015. International geosphere-biosphere programme and earth system science: Three decades of co-evolution. Anthropocene 12, 3-16.

[104]

Simpson, G.G., 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85, 1-350.

[105]

Slocombe, D.S., 1993. Environmental planning, ecosystem science, and ecosystem approaches for integrating environment and development. Environ. Manag. 17 (3), 289-303.

[106]

Steffen, W., Rockström, J., Richardson, K., Lenton, T.M., Folke, C., Liverman, D., Summerhayes, C.P., Barnosky, A.D., Cornell, S.E., Crucifix, M., Donges, J.F., Fetzer, I., Lade, S.J., Scheffer, M., Winkelmann, R., Schellnhuber, H.J., 2018. Trajectories of the earth system in the anthropocene. Proc. Natl. Acad. Sci. U.S.A. 115 (33), 8252-8259.

[107]

Sterling, E.J., Filardi, C., Toomey, A., Sigouin, A., Betley, E., Gazit, N., Newell, J., Albert, S., Alvira, D., Bergamini, N., Blair, M., Boseto, D., Burrows, K., Bynum, N., Caillon, S., Caselle, J.E., Claudet, J., Cullman, G., Dacks, R., Eyzaguirre, P.B., Gray, S., Herrera, J., Kenilorea, P., Kinney, K., Kurashima, N., Macey, S., Malone, C., Mauli, S., McCarter, J., McMillen, H., Pascua, P.a., Pikacha, P., Porzecanski, A.L., de Robert, P., Salpeteur, M., Sirikolo, M., Stege, M.H., Stege, K., Ticktin, T., Vave, R., Wali, A., West, P., Winter, K.B., Jupiter, S.D., 2017. Biocultural approaches to well-being and sustainability indicators across scales. Nat. Ecol. Evol. 1 (12), 1798-1806.

[108]

Sutherland, W.J., Armstrong-Brown, S., Armsworth, P.R., Brereton, T., Brickland, J., Campbell, C.D., Chamberlain, D.E., Cooke, A.I., Dulvy, N.K., Dusic, N.R., Fitton, M., Freckleton, R.P., Godfray, H.C.J., Grout, N., Harvey, H.J., Hedley, C., Hopkins, J.J., Kift, N.B., Kirby, J., Kunin, W.E., Macdonald, D.W., Marker, B., Naura, M., Neale, A.R., Oliver, T., Osborn, D., Pullin, A.S., Shardlow, M.E.A., Showler, D.A., Smith, P.L., Smithers, R.J., Solandt, J.L., Spencer, J., Spray, C.J., Thomas, C.D., Thompson, J., Webb, S.E., Yalden, D.W., Watkinson, A.R., 2006. The identification of 100 ecological questions of high policy relevance in the UK. J. Appl. Ecol. 43 (4), 617-627.

[109]

Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., Carmel, Y., Coomes, D.A., Coulson, T., Emmerson, M.C., Hails, R.S., Hays, G.C., Hodgson, D.J., Hutchings, M.J., Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E., Lambin, X., Lewis, O.T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E.J., Norris, K., Phillimore, A.B., Purves, D.W., Reid, J.M., Reuman, D.C., Thompson, K., Travis, J.M.J., Turnbull, L.A., Wardle, D.A., Wiegand, T., 2013. Identification of 100 fundamental ecological questions. J. Ecol. 101 (1), 58-67.

[110]

Tansley, A.G., 1935. The use and abuse of vegetational concepts and terms. Ecology 16 (3), 284-307.

[111]

Tilman, D., Reich, P.B., Knops, J.M.H., 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629-632.

[112]

Trimmer, J.T., Miller, D.C., Guest, J.S., 2019. Resource recovery from sanitation to enhance ecosystem services. Nat. Sustain. 2, 681-690.

[113]

Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., Polsky, C., Pulsipher, A., Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. U.S.A. 100 (14), 8074-8079.

[114]

Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human domination of Earth’s ecosystems. Science 277 (5325), 494-499.

[115]

Von Humboldt, A., 1849. Aspects of nature, in different lands and different climates, with scientific elucidations. Translated by Longman M.S. Brown, Green, and Longman, London.

[116]

Wallace, AR, 1891. Natural selection and tropical nature: Essays on descriptive and theoretical biology. Macmillan, London.

[117]

Whittaker, R.H., 1953. A consideration of climax theory: The climax as a population and pattern. Ecol. Monogr. 23 (1), 41-78.

[118]

Willis, A.J., 1997. The ecosystem: An evolving concept viewed historically. Funct. Ecol. 11 (2), 268-271.

[119]

Wu, J., 2013. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 28, 999-1023.

[120]

Xiao, H., McDonald-Madden, E., Sabbadin, R., Peyrard, N., Dee, L.E., Chadès, I., 2019. The value of understanding feedbacks from ecosystem functions to species for managing ecosystems. Nat. Commun. 10, 3901.

[121]

Yu, G.R., 2009. Scientific frontier on human activities and ecosystem changes. Higher education press, Beijing. (in Chinese)

[122]

Zeng, Z., Piao, S., Li, L.Z.X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X., Wood, E.F., Friedlingstein, P., Mao, J., Estes, L.D., Myneni, R.B., Peng, S., Shi, X., Seneviratne, S.I., Wang, Y., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Chang. 7, 432-436.

[123]

Zheng, H., Robinson, B.E., Liang, Y.C., Polasky, S., Ma, D.C., Wang, F.C., Ruckelshaus, M., Ouyang, Z.Y., Daily, G.C., 2013. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl. Acad. Sci. U.S.A. 110 (41), 16681-16686.

PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

/