Hydrological cycle and water resources in a changing world: A review

Dawen Yang , Yuting Yang , Jun Xia

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (2) : 115 -122.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (2) :115 -122. DOI: 10.1016/j.geosus.2021.05.003
research-article

Hydrological cycle and water resources in a changing world: A review

Author information +
History +
PDF

Abstract

Water is the fundamental natural resource that supports life, ecosystems and human society. Thus studying the water cycle is important for sustainable development. In the context of global climate change, a better understanding of the water cycle is needed. This study summarises current research and highlights future directions of water science from four perspectives: (i) the water cycle; (ii) hydrologic processes; (iii) coupled natural-social water systems; and (iv) integrated watershed management. Emphasis should be placed on understanding the joint impacts of climate change and human activities on hydrological processes and water resources across temporal and spatial scales. Understanding the interactions between land and atmosphere are keys to addressing this issue. Furthermore systematic approaches should be developed for large basin studies. Areas for focused research include: variations of cryosphere hydrological processes in upper alpine zones; and human activities on the water cycle and relevant biogeochemical processes in middle-lower reaches. Because the water cycle is naturally coupled with social characteristics across multiple scales, multi-process and multi-scale models are needed. Hydrological studies should use this new paradigm as part of water-food-energy frontier research. This will help to promote interdisciplinary study across natural and social sciences in accordance with the United Nation's sustainable development goals.

Cite this article

Download citation ▾
Dawen Yang, Yuting Yang, Jun Xia. Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2021, 2(2): 115-122 DOI:10.1016/j.geosus.2021.05.003

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. L1924041) and the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences (Grant No. XK2019DXC006).

References

[1]

Aufdenkampe, A., Mayorga, E., Raymond, P., Melack, J., Doney, S., Alin, S., Aalto, R., Yoo, K., 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53-60.

[2]

Beamer, J.P., Hill, D.F., Mcgrath, D., Arendt, A., Kienholz, C., 2017. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed. Water Resour. Res. 53 (9), 7502-7520.

[3]

Belmont, Forum, 2016. Belmont Forum Announces Collaborative Research Awards for the Recent Call on Mountains as Sentinels of Change. https://www.belmontforum.org/announcements/2016/ (accessed 04 April 2021).

[4]

Blöschl, G., Bierkens, M., Chambel, A., et al., 2019. Twenty-three unsolved problems in hydrology (UPH) -A community perspective. Hydrol. Sci. J. 64 (10), 1141-1158.

[5]

Bierkens, M., 2015. Global hydrology 2015: State, trends, and directions. Water Resour. Res. 51, 4923-4947.

[6]

Bierkens, M.F., Wada, Y., 2019. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 14 (6), 063002.

[7]

Bleischwitz, R., Spataru, C., VanDeveer, S.D., Obersteiner, M., van der Voet, E., Johnson, C., Andrews-Speed, P., Boersma, T., Hoff, H., Van Vuuren, D.P., 2018. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 1, 737-743.

[8]

Brutsaert, W., 2005. Hydrology:An introduction. Cambridge University Press, Cambridge.

[9]

Braga, B., Chartres, C., Cosgrove, W.J., da Cunha, L.V., Gleick, P.H., Kabat, P., Kadi, M.A., Loucks, D.P., Lundqvist, J., Narain, S., Xia, J., 2014. Water and the future of humanity: Revisiting water security. Calouste Gulbenkian Foundation and Springer.

[10]

Cai, X., McKinney, D.C., Lasdon, L.S., 2002. A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resour. Res. 38 (6), 21-1.

[11]

Chawla, I., Karthikeyan, L., Mishra, A.K., 2020. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 585, 124826.

[12]

Chen, L., Wang, L., 2018. Recent advance in earth observation big data for hydrology. Big Earth Data 2 (1), 86-107.

[13]

Chen, Y.P., Fu, B.J., Zhao, Y., Wang, K.B., Zhao, M.M., Ma, J.F., Wu, J.H., Xu, C., Liu, W.G., Wang, H., 2020. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 263, 121223.

[14]

Coerver, H.M., Rutten, M.M., van de Giesen, N.C., 2018. Deduction of reservoir operating rules for application in global hydrological models. Hydrol. Earth Syst. Sci. 22, 831-851.

[15]

Connell, D., Grafton, R.Q., 2011. Water reform in the Murray-Darling Basin. Water Resour. Res. 47 (12) 2010WR009820.

[16]

Ding, Y., Tang, D., Dai, H., Wei, Y., 2014. Human-water harmony index: A new approach to assess the human water relationship. Water Resour. Manag. 28 (4), 1061-1077.

[17]

Ding, Y, Zhang, S, Cheng, R., 2020. Cryospheric hydrology: Decode the largest freshwater reservoir on earth. Bull. Chin. Acad. Sci. 4, 414-424 (in Chinese).

[18]

Dingman, S.L., 2015. Physical hydrology, Third Ed. Waveland press, Long Grove.

[19]

Diro, G.T., Sushama, L., Martynov, A., Jeong, D.I., Verseghy, D., Winger, K., 2014. Land-atmosphere coupling over North America in CRCM5. J. Geophys. Res. Atmos. 119, 1955-1972.

[20]

D’Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell’Angelo, J., Gephart, J., MacDonald, G. K., Seekell, D. A., Suweis, S., Rulli, M. C., 2018. The Global Food-Energy-Water Nexus. Rev. Geophys. 56, 456-531.

[21]

Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., Ludwig, F., 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 143, 13-26.

[22]

Dosdogru, F., Kalin, L., Wang, R., Yen, H., 2020. Potential impacts of land use/cover and climate changes on ecologically relevant flows. J. Hydrol. 584, 124654.

[23]

Du, T., Xiong, L., Xu, C.Y., Gippel, C.J., Guo, S., Liu, P., 2015. Return period and risk analysis of nonstationary low-flow series under climate change. J. Hydrol. 527, 234-250.

[24]

Farinotti, D., Immerzeel, W.W., de Kok, R.J., Quincey, D.J., Dehecq, A., 2020. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 13 (1), 8-16.

[25]

Feng, K., Hubacek, K., Pfister, S., Yu, Y., Sun, L., 2014. Virtual scarce water in China. Environ. Sci. Technol. 48 (14), 7704-7713.

[26]

Gao, L., Bryan, B., 2017. Finding pathways to national-scale land-sector sustainability. Nature 544 (7649), 217-222.

[27]

Gordon, L.J., Steffen, W., Jönsson, B.F., Folke, C., Falkenmark, M., Johannessen, Å., 2005. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. U.S.A. 102 (7), 612-617.

[28]

Gudmundsson, L., Boulange, J., Do, H.X., Gosling, S.N., Grillakis, M.G., Koutroulis, A.G., Leonard, M., Liu, J., Schmied, H.M., Papadimitriou, L., Pokhrel, Y., 2021. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371 (6534), 1159-1162.

[29]

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., 2014. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. U.S.A. 111 (9), 3251-3256.

[30]

Hagemann, S., Chen, C., Clark, D.B., Folwell, S., Gosling, S.N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., Wiltshire, A.J., 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 4, 129-144.

[31]

Hao, Z., Singh, V.P., Hao, F., 2018. Compound extremes in hydroclimatology: A review. Water 10, 718.

[32]

He, H., Jansson, P.E., Gärdenäs, A.I., 2021. CoupModel (v6.0): An ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics-Evaluated against empirical data from a climatic and fertility gradient in Sweden. Geosci. Model Dev. 14 (2), 735-761.

[33]

Hoekstra, A., Buurman, J., Ginkel, K.V., 2018. Urban water security: A review. Environ. Chem. Lett. 13, 053002.

[34]

Holzworth, D., Huth, N.I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., Verrall, S., Herrmann, N.I., Zheng, B., Snow, V., 2018. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environ. Model Softw. 103, 43-51.

[35]

IPCC, 2014. Climate change 2013: The physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

[36]

Jiang, C., Xiong, L., Guo, S., Xia, J., Xu, C.Y., 2017. A process-based insight into nonstationarity of the probability distribution of annual runoff. Water Resour. Res. 53 (5), 4214-4235.

[37]

Kleidon, A., Renner, M., 2013. Thermodynamic limits of hydrologic cycling within the Earth system: Concepts, estimates and implications. Hydrol. Earth Syst. Sci. 17, 2873-2892.

[38]

Lehtoranta, J., Ekholm, P., Vihervaara, P., Kortelainen, P., 2014. Coupled biogeochemical cycles and ecosystem services. http://hdl.handle.net/10138/135577 (accessed 04 April 2021).

[39]

Lian, X., Piao, S., Li, L., Li, Y., Huntingford, C., Ciais, P., Cescatti, A., Janssens, I., Peñuelas, J., Buermann, W., Chen, A., Li, X., Myneni, R., Wang, X., Wang, Y., Yang, Y., Zeng, Z., Zhang, Y., McVicar, T., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6 (1), eaax0225.

[40]

Liang, S., Ge, S., Wan, L, Zhang, J., 2010. Can climate change cause the Yellow River to dry up? Water Resour. Res. 46 (2), 2009WR007971.

[41]

Li, X., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Wang, W., Hu, X., Xu, X., Wen, J., Wang, L., 2017. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 4 (1), 1-11.

[42]

Liu, J., Mao, G., Hoekstra, A.Y., Wang, H., Wang, J., Zheng, C., van Vliet, M.T., Wu, M., Ruddell, B., Yan, J., 2018. Managing the energy-water-food nexus for sustainable development. Appl. Energ. 210, 377-381.

[43]

Liu, Y., Gupta, H.V., 2007. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 43 (7), W07401.

[44]

López, J., Francés, F., 2013. Non-stationary flood frequency analysis in continental Spanish rivers using climate and reservoir indices as external covariates. Hydrol. Earth Syst. Sci. 17, 3189-3203.

[45]

Lott, F.C., Stott, P.A., 2016. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565-4575.

[46]

Lu, F., Xiao, W.H., Yan, D.H., Wang, H., 2017. Progresses on statistical modeling of non-stationary extreme sequences and its application in climate and hydrological change. J. Hydraul. 48, 1-11 (in Chinese).

[47]

Luo, Y., Yang, Y., Yang, D., Zhang, S., 2020. Quantifying the impact of vegetation changes on global terrestrial runoffusing the Budyko framework. J. Hydrol. 590, 125389.

[48]

Mao, G., Xia, J., He, X., Tang, Y., Liu, J., 2017. Hydrology in a coupled human-natural system: Research, innovation, and practices. Bull. Am. Meteorol. Soc. 98 (12), ES295-ES298.

[49]

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323.

[50]

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., Stouffer, R.J., 2008. Stationarity is dead: Whither water management? Science 319, 573-574.

[51]

Milly, P.C.D., Dunne, K.A., 2017. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53 (4), 822-838.

[52]

Milly, P.C.D., Dunne, K.A., Vecchia, A.V., 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347-350.

[53]

Montanari, A., Bahr, J., Blöschl, G., Cai, X., Mackay, D.S., Michalak, A.M., Rajaram, H., Sander, G., 2015. Fifty years of Water Resources Research: Legacy and perspectives for the science of hydrology. Water Resour. Res. 51, 6797-6803.

[54]

Naveau, P., Hannart, A., Ribes, A., 2020. Statistical methods for extreme event attribution in climate science. Annu. Rev. Stat. Appl. 7, 89-110.

[55]

Obersteiner, M., Walsh, B., Frank, S., Havlík, P., Cantele, M., Liu, J., Palazzo, A., Herrero, M., Lu, Y., Mosnier, A., Valin, H., 2016. Assessing the land resource-food price nexus of the sustainable development goals. Sci. Adv. 2 (9), e1501499 -e1501499.

[56]

Paciorek, C.J., Stone, D.A., Wehner, M.F., 2018. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather. Clim. Extremes 20, 69-80.

[57]

Palmer, M., Ruhi, A., 2019. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 365 (6459), eaaw2087.

[58]

Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat, D., Zaehle, S., 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runofftrends. Proc. Natl. Acad. Sci. U.S.A. 104, 15242-15247.

[59]

Pokhrel, Y.N., Hanasaki, N., Wada, Y., Kim, H., 2016. Recent progresses in incorporating human land-water management into global land surface models toward their integration into Earth system models. Wiley Interdiscip. Rev. Water 3, 548-574.

[60]

Priscoli, J.D., 2000. Water and civilization: Using history to reframe water policy debates and to build a new ecological realism. Water Policy 1 (6), 623-636.

[61]

Radic, V., Hock, R., 2014. Glaciers in the earth’s hydrological cycle: Assessments of glacier mass and runoffchanges on global and regional scales. Surv. Geophys. 35 (3), 813-837.

[62]

Raju, K.S., Kumar, D.N., 2018. Impact of climate change on water resources - With modeling techniques and case studies. Springer Verlag, Singapor.

[63]

Sannigrahi, S., Bhatt, S., Rahmat, S., Paul, S., Sen, S., 2018. Estimating global ecosystem service values and its response to land surface dynamics during 1995-2015. J. Environ. Manag. 223, 115-131.

[64]

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N.W., Clark, D.B., Dankers, R., Eisner, S., Fekete, B.M., Colón-González, F.J., Gosling, S.N., 2014. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. U.S.A. 111, 3249-3250.

[65]

Sivapalan, M, Blöschl, G., 2015. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51 (9), 6988-7022.

[66]

Sutton, R., 2019. Climate Science needs to take risk assessment much more seriously. Bull. Am. Meteorol. Soc. 100, 1637-1642.

[67]

Tang, Q., Huang, Z., Liu, X., Han, S., Leng, G., Zhang, X., Mu, M., 2015. Impacts of human water use on the large-scale terrestrial water cycle. Adv. Earth Sci. 30 (10), 1091-1099 (in Chinese).

[68]

Tang, Q., 2020. Global change hydrology: Terrestrial water cycle and global change. Sci. China Earth Sci. 63, 459-462 (in Chinese).

[69]

Taylor, R.G., Todd, M.C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., MacDonald, A.M., 2013. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Chang. 3 (4), 374-378.

[70]

Ukkola, A.M., Kauwe, M., Roderick, M.L., Abramowitz, G., Pitman, A.J., 2020. Robust future changes in meteorological drought in cmip 6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47 (11), e2020GL087820.

[71]

UNESCO, UN-Water, 2020. The United Nations World Water Development Report 2020:Water and Climate Change. UNESCO, Paris.

[72]

Vignola, R., Locatelli, B., Martinez, C., Imbach, P., 2009. Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists? Mitig. Adapt Strateg. Glob. Chang. 14 (8), 691.

[73]

Viola, F., Caracciolo, D., Deidda, R., 2021. Modelling the mutual interactions between hydrology, society and water supply systems. Hydrol. Sci. J. 66. doi: 10.1080/02626667.2021.1909729.

[74]

Vogel, R.M., Lall, U., Cai, X., Rajagopalan, B., Weiskel, P.K., Hooper, R.P., Matalas, N.C., 2015. Hydrology: The interdisciplinary science of water. Water Resour. Res. 51, 4409-4430.

[75]

Vonk, J.E., Tank, S.E., Walvoord, M.A., 2019. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 10 (1), 1-4.

[76]

Vörösmarty, C.J., Dork, S., 2000. Anthropogenic disturbance of the terrestrial water cycle. BioScience 50 (9), 753-765.

[77]

Wada, Y., Bierkens, M.F., Roo, A.D., Dirmeyer, P.A., Famiglietti, J.S., Hanasaki, N., Konar, M., Liu, J., Müller Schmied, H., Oki, T., Pokhrel, Y., 2017. Human-water interface in hydrological modelling: Current status and future directions. Hydrol. Earth Syst. Sci. 21, 4169-4193.

[78]

Wang, J., Hong, Y., Gourley, J., Adhikari, P., Li, L., Su, F., 2010b. Quantitative assessment of climate change and human impacts on long-term hydrologic response: A case study in a sub-basin of the Yellow River. China. Int. J. Climatol. 30, 2130-2137.

[79]

Wang, H., Yan, D.H., Jia, Y.W., Hu, D.L., Wang, L.H., 2010a. Subject system of modern hydrology and water resources and research frontiers and hot issues. Adv. Water Resour. 21, 479-489 (in Chinese).

[80]

Wang, T., Yang, D., Fang, B., Yang, W., Qin, Y., Wang, Y., 2019. Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. Sci. Total Environ. 649, 515-525.

[81]

Wang, T., Yang, H., Yang, D., Qin, Y., Wang, Y., 2018. Quantifying the streamflow response to frozen ground degradation in the source region of the yellow river within the budyko framework. J. Hydrol. 558, 301-313.

[82]

Xia, J., Zhang, Y., Xiong, L., He, S., Wang, L., Yu, Z., 2017. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 60 (4), 652-658.

[83]

Yang, D.W., Gao, B., Jiao, Y., Lei, H.M., 2015. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci. China Earth Sci. 58 (1), 36-45.

[84]

Yang, Y., Zhang, S., Roderick, M.L., McVicar, T.R., Yang, D., Liu, W., Li, X., 2020. Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrol. Earth Syst. Sci. 24 (6), 2921-2930.

[85]

Yao, T.D., 2019. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 64, 417.

[86]

Yuan, X., Roundy, J.K., Wood, E.F., Sheffield, J., 2015. Seasonal forecasting of global hydrologic extremes: System development and evaluation over GEWEX basins. Bull. Am. Meteorol. Soc. 96, 1895-1912.

[87]

Zang, W., Liu, S., Huang, S., Li, J., Fu, Y., Sun, Y., Zheng, J., 2019. Impact of urbanization on hydrological processes under different precipitation scenarios. Nat. Hazards 99 (3), 1233-1257.

[88]

Zheng, G., Yang, Y., Yang, D., Dafflon, B., Wu, Q., 2020. Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002-2016. Remote Sens. Environ. 247, 111927.

[89]

Zhou, Y., Ma, J., Zhang, Y., Li, J., Feng, L., Zhang, Y., Shi, K., Brookes, J.D., Jeppesen, E., 2019. Influence of the three Gorges Reservoir on the shrinkage of China’s two largest freshwater lakes. Glob. Planet. Change 177, 45-55.

[90]

Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I., Levin, S.A., 2012. Trading-offfish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. U.S.A. 109 (15), 5609-5614.

PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

/