Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years

Xiao Zhang , Jun Wang , Yan Gao , Lixin Wang

Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (1) : 74 -85.

PDF
Geography and Sustainability ›› 2021, Vol. 2 ›› Issue (1) :74 -85. DOI: 10.1016/j.geosus.2021.02.001
research-article

Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years

Author information +
History +
PDF

Abstract

The impacts of climate change and human activities on vegetation dynamics have attracted wide attention, especially in sensitive and vulnerable areas such as the Qingzang Plateau of China. In this region, a series of ecological restoration projects have been launched while the effectiveness of these projects requires evaluation and further improvements. Remote sensing with high temporal resolution and spatial coverage is an effective way for the vegetation dynamics research in this region. In this study, the spatial and temporal distribution of climate factors and vegetation coverage as well as the influencing factors such as air temperature, precipitation, land use, slope, slope direction, soil and altitude were analyzed. The geographical detector was used to analyze the influence of climate factors on vegetation coverage and the interaction among factors in different eco-geographical regions. The results showed that: 1) the average values from the 20 years of normalized difference vegetation index (NDVI) decreased gradually from southeast (> 0.61) to northwest (0.12). The overall average of NDVI increased 0.02 per year from 1998 to 2018 and the impact factors varied among different eco-geographical regions; 2) some controlling factors showed nonlinear enhancement such as altitude and slope; 3) land use was an important factor affecting the distribution of vegetation especially in humid, semi-arid and arid areas, but the impacts of elevation and temperature were stronger than land use types in semi-humid and humid areas. The design and construction of ecological protection and restoration projects on the Qingzang Plateau required scientific and detailed demonstration as well as monitoring and evaluation. In addition, new tools and theories were also needed in the selection of ecosystem restoration strategies. Based on the findings, this study also provides suggestions for the sustainable ecological restoration on the Qingzang Plateau.

Keywords

Vegetation distribution / Geo-detector / Ecohydrology / Ecological restoration / Qingzang Plateau

Cite this article

Download citation ▾
Xiao Zhang, Jun Wang, Yan Gao, Lixin Wang. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geography and Sustainability, 2021, 2(1): 74-85 DOI:10.1016/j.geosus.2021.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0405).

References

[1]

Albert, C., Spangenberg, J.H., Schröter, B., 2017. Nature-based solutions: Criteria. Nature 543, 315.

[2]

Alhassan, A.R.M., Ma, W.W., Li, G., Jiang, Z.R., Wu, J.Q., Chen, G.P., 2018. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Ecol. Evol. 8 (23), 11999-12010.

[3]

An, C.C., Fan, J.R., Zhang, Y.F., Yan, D., 2018. Characterizing the responses of vegetation to climate change in the Tibet Plateau using remote sensing data. J. Appl. Remote. Sens. 12 (1) 016035.

[4]

Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., Leng, R., 2020. Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biol. 26 (3), 1608-1625.

[5]

Bajracharya, S.R., Maharjan, S.B., Shrestha, F., Guo, W., Liu, S., Immerzeel, W., Shrestha, B., 2015. The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010. Int. J. Water Resour. D. 31 (2), 161-173.

[6]

Bao, G.S., Suetsugu, K., Wang, H.S., Yao, X., Liu, L., Ou, J., Li, C.J., 2015. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecol. Res. 30 (3), 507-515.

[7]

Bartimus, H.L., Montgomery, T.G., Philipp, D., Cater, J., Coffey, K.P., Shanks, B.C., 2016. 118 Mob grazing effects on cattle performance in southeast Arkansas. J. Anim. Sci. 94 (suppl_2), 55-55.

[8]

Bastin, J.F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, T.W., 2019. The global tree restoration potential. Science 365 (6448), 76-79.

[9]

Bonan, G.B., 2016. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. S. 47 (1), 97-121.

[10]

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tommervik, H., Bala, G., Zhu, Nemani, R.R., Myneni, R.B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122-129.

[11]

Cai, X.B., Peng, Y.L., Yang, M.N., Zhang, T., Zhang, Q., 2014. Grassland degradation decrease the diversity of Arbuscular Mycorrhizal Fungi species in Tibet Plateau. Not. Bot. Horti. Agrobo. 42 (2), 333-339.

[12]

Chen, S.Y., Liu, W.J., Qin, X., Liu, Y.S., Zhang, T.Z., Chen, K.L., Hu, F.Z., Ren, J.W., Qin, D.H., 2012. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin. Environ. Res. Lett. 7 (4) 045406.

[13]

Cui, X., Liu, S., Wei, X., 2012. Impacts of forest changes on hydrology: A case study of large watersheds in the upper reaches of Minjiang River watershed in China. Hydrol. Earth Syst. Sc. 16 (11), 4279-4290.

[14]

Cui, N.X., Luo, G., Du, S.H., 2018. Analysis of Spatial-temporal Variation of Grassland Landscape Pattern Based on Terrain Factors in Qinghai Yushu Tibetan Autonomous Prefecture, China. 26th International Conference on Geoinformatics Hu, S., Ye, X., Yang, K., Fan, H., editors.

[15]

Cheng, G., Lu, X., Wang, X., Sun, J., 2018. Rebirth after death: Forest succession dynamics in response to climate change on Gongga Mountain, Southwest China. J. Mt. Sci-engl. 15 (8), 1671-1681.

[16]

Cui, J., Tian, L., Wei, Z., Huntingford, C., Wang, P., Cai, Z., Ma, N., Wang, L., 2020. Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem. Water Resour. Res. 56 (4) e2019WR024815.

[17]

Dolezal, J., Dvorsky, M., Kopecky, M., Liancourt, P., Hiiesalu, I., Macek, M., Altman, J., Chlumska, Z., Rehakova, K., Capkova, K., Borovec, J., Mudrak, O., Wild, J., Schweingruber, F., 2016. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881.

[18]

Eldridge, D.J., Wang, L., Ruiz-Colmenero, M., 2015. Shrub encroachment alters the spatial patterns of infiltration. Ecohydrol. 8, 83-93.

[19]

Fan, J.W., Shao, Q.Q., Liu, J.Y., Wang, J.B., Harris, W., Chen, Z.Q., Zhong, H.P., Xu, X.L., Liu, R.G., 2010. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 170 (1-4), 571-584.

[20]

Feng, J.M., Wang, T., Qi, S.Z., Xie, C.W., 2005. Land degradation in the source region of the Yellow River, northeast Qinghai-Xizang Plateau: classification and evaluation. Environ. Geol. 47 (4), 459-466.

[21]

Fang, X.N., Zhao, W.W., Wang, L.X., Feng, Q., Ding, J.Y, Liu, Y.X., Zhang, X., 2016. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci. 20, 3309-3323.

[22]

Feng, X.M., Fu, B.J., Piao, S.L., Wang, S., Ciais, P., Zeng, Z., , Y.H., Zeng, Y., Li, Y., Jiang, X., Wu, B., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change. 6 (11), 1019-1022.

[23]

Fu, B.J., 2020. Promoting Geography for Sustainability. Geogr. Sustain. 1 (1), 1-7.

[24]

Fu, B.J., Liu, G.H., Chen, L.D., Ma, K.M., Li, J.R., 2001. Scheme of ecological regional ization in China. Acta Ecol. Sin. 21 (1), 1-6 (in Chinese).

[25]

Galvani, A.P., Bauch, C.T., Anand, M., Singer, B.H., Levin, S.A., 2016. Human-environment interactions in population and ecosystem health. P. Natl. Acad. Sci. USA. 113 (51), 14502-14506.

[26]

Gao, Y.H., Luo, P., Wu, N., Chen, H., Wang, G.X., 2008. Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an alpine meadow on the eastern Tibetan Plateau. Appl. Ecol. Env. Res. 6 (3), 69-79.

[27]

Ge, D.Y., Zhang, Z.Q., Xia, L., Zhang, Q., Ma, Y., Yang, Q.S., 2012. Did the expansion of C-4 plants drive extinction and massive range contraction of micromammals? Inferences from food preference and historical biogeography of pikas. Palaeogeogr. Palaeocl. 326, 160-171.

[28]

Gouveia, C., DaCamara, C.C., Trigo, R.M., 2010. Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat. Hazard. Earth. Sys. 10, 673-684.

[29]

Guo, Q.Q., Li, H.E., Gao, C., Yang, R., 2019. Leaf traits and photosynthetic characteristics of endangered Sinopodophyllum hexandrum (Royle) Ying under different light regimes in Southeastern Tibet Plateau. Photosynthetica 57 (2), 548-555.

[30]

Guo, Y., Liu, L.P., Zheng, L.L., Yu, F.H., Song, M.H., Zhang, X.Z., 2017. Long-term grazing affects relationships between nitrogen form uptake and biomass of alpine meadow plants. Plant Ecol 218 (9), 1035-1045.

[31]

Hao, F.H., Zhang, X., Ouyang, W., Skidmore, A.K., Toxopeus, A.G., 2012. Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environ. Model. Assess. 17 (4), 389-398.

[32]

He, C., Harden, C.P., Liu, Y., 2020. Comparison of water resources management between China and the United States. Geogr. Sustain. 1 (2), 98-108.

[33]

Hou, J., Wang, H.Q., Fu, B.J., Zhu, L.H., Wang, Y.F., Li, Z.S., 2016. Effects of plant diversity on soil erosion for different vegetation patterns. Catena 147, 632-637.

[34]

Hu, X., Li, Z.C., Li, X.Y., Liu, Y., 2015. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China. Soil Till. Res. 150, 1-9.

[35]

Hutchinson, M.F., Xu, T., 2013. Anusplin Version 4.4 User Guide. in http://fennerschool.anu.edu.au/files/anusplin44.pdf.

[36]

Karhu, R.R., Anderson, S.H., 2006. The effect of high-tensile electric fence designs on big-Game and livestock movements. Wildlife Soc. B 34 (2), 293-299.

[37]

Keenan, T.F., Riley, W.J., 2018. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change. 8, 825-828.

[38]

Lanning, M., Wang, L.X., Scanlon, T.M., Vadeboncoeur, M.A., Adams, B., Epstein, H.E., Druckenbrod, D., 2019. Intensified vegetation water use under acid deposition. Sci. Adv. 5 (7), 5168.

[39]

Li, C.Y., Peng, F., Xue, X., You, Q.G., Lai, C.M., Zhang, W.J., Cheng, Y.X., 2018a. Productivity and Quality of Alpine Grassland Vary With Soil Water Availability Under Experimental Warming. Front. Plant Sci. 9, 1790.

[40]

Li, L., Ni, J., Chang, F., Yue, Y., Frolova, N., Magritsky, D., Borthwick, A.G.L., Ciais, P., Wang, Y., Zheng, C., Walling, D.E., 2020. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 65 (1), 62-69.

[41]

Li, W., Wang, J.L., Zhang, X.J., Shi, S.L., Cao, W.X., 2018b. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecol. Eng. 111, 134-142.

[42]

Leblond, M., Dussault, C., Ouellet, J.P., Poulin, M., Courtois, R., Fortin, J., 2007. Electric fencing as a measure to reduce moose-vehicle collisions. J. Wildlife Manage. 71 (5), 1695-1703.

[43]

Li, Y.F., Li, Z.W., Wang, Z.Y., Wang, W.L., Jia, Y.H., Tian, S.M., 2017. Impacts of artificially planted vegetation on the ecological restoration of movable sand dunes in the Mugetan Desert, northeastern Qinghai-Tibet Plateau. Int. J.Sediment Res. 32 (2), 277-287.

[44]

Liu, J., Dietz, T., Carpenter, S.R., Folke, C., Alberti, M., Redman, C.L., Schneider, S.H., Ostrom, E., Pell, A.N., Lubchenco, J., Taylor, W.W., Ouyang, Z., Deadman, P., Kratz, T., Provencher, W., 2007. Coupled human and natural systems. Ambio 36 (8), 639-649.

[45]

Liu, B., Shen, W.S., Lin, N.F., Li, R., Yue, Y.M., 2014. Deriving vegetation fraction information for the alpine grassland on the Tibetan plateau using in situ spectral data. J. Appl. Remote. Sens. 8, 083630.

[46]

Liu, S.L., Su, X.K., Dong, S.K., Cheng, F.Y., Zhao, H.D., Wu, X.Y., Zhang, X., Li, J.R., 2015. Modeling aboveground biomass of an alpine desert grassland with SPOT-VGT NDVI. Gisci. Remote Sens. 52 (6), 680-699.

[47]

Liang, L., Zhao, S.H., Qin, Z.H., He, K.X., Chen, C., Luo, Y.X., Zhou, X.D., 2014. Drought change trend using MODIS TVDI and its relationship with climate factors in China from 2001 to 2010. J. Integr. Age. 13 (7), 1501-1508.

[48]

Liu, Y., 2020. The willingness to pay for ecosystem services on the Tibetan Plateau of China. Geogr. Sustain. 1 (2), 152-162.

[49]

Lorimer, J., Sandom, C., Jepson, P., Doughty, C., Barua, M., Kirby, K.J., 2015. Rewilding: Science, practice, and politics. Annu. Rev. Env. Resour. 40 (1), 39-62.

[50]

Luo, L.H., Duan, Q.T., Wang, L.X., Zhao, W.Z., Zhuang, Y.L., 2020. Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway. Reg. Environ. Change. 20, 33.

[51]

Lv, Y.H., Fu, B.J., Feng, X.M., Zeng, Y., Liu, Y., Chang, R.Y., Sun, G., Wu, B.F., 2012. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7 (2), 10.

[52]

Ma, X.X., Hong, J.T., Wang, X.D., 2019. C:N:P stoichiometry of perennial herbs’ organs in the alpine steppe of the northern Tibetan Plateau. J. Mt. Sci-engl. 16 (9), 2039-2047.

[53]

Mesleard, F., Yavercovski, N., Lefebvre, G., Willm, L., Bonis, A., 2017. High stocking density controls Phillyrea Angustifolia in Mediterranean grasslands. Environ. Manage. 59 (3), 455-463.

[54]

Mishra, N.B., Mainali, K.P., 2017. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 587, 326-339.

[55]

Pachauri, R., Reisinger, A., 2007. IPCC fourth assessment report. IPCC, Geneva.

[56]

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42.

[57]

Piao, S.L., 2003. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 108 (D14), 4401.

[58]

Piao, S.L., Friedlingstein, P., Ciais, P., Noblet-Ducoudre, N.d., Labat, D., Zaehle, S., 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runofftrends. P. Natl. Acad. Sci. USA. 104 (39), 15242-15247.

[59]

Piao, S.L., Zhang, X, Wang, Z., Liang, T., E.Y., Wang., S.P., Zhu, J.T., Niu, B., 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Sci. Bull. 64 (27), 2842-2855 (in Chinese).

[60]

Pontee, N., Narayan, S., Beck, M.W., Hosking, A.H., 2016. Nature-based solutions: Lessons from around the world. P. I. Civil. Eng. - Mar. EN. 169 (1), 29-36.

[61]

Qin, D.H., Stocker, T.F., Beijing, A.a.T. B., 2014. Highlights of the IPCC Working Group I Fifth Assessment Report. Progress inquisitiones de mutatione climates 10 (1), 6.

[62]

Qiu, B.W., Zeng, C.Y., Tang, Z.H., Chen, C.C., 2013. Characterizing spatiotemporal non-stationarity in vegetation dynamics in China using MODIS EVI dataset. Environ. Monit. Assess. 185 (11), 9019-9035.

[63]

Qu, W., Shi, W., Zhang, J., Liu, T., 2020. T 21 China 2050: A tool for national sustainable development planning. Geography and Sustainability 1 (1), 33-46.

[64]

Russell, J.R., Barnhart, S.K., Morrical, D.G., 2013. Use of mob grazing to improve cattle production, enhance legume establishment and increase carbon sequestration in Iowa pastures. Leopold Center Completed Grant Reports. Https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article = 1426&context = leopold_grantreports.

[65]

Sagan, C., Toon, O.B., Pollack, J.B., 1979. Anthropogenic albedo changes and the earth’s climate. Science 206 (4425), 1363-1368.

[66]

Sigdel, S.R., Liang, E.Y., Wang, Y.F., Dawadi, B., Camarero, J.J., 2020. Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J. Biogeogr. 00, 13840.

[67]

Stocker, T.F., Qin, D.H., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, B., Midgley, P.M., 2013. IPCC, 2013: Climate change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. IPCC.

[68]

Stovall, A.E.L., Shugart, H., Yang, X., 2019. Tree height explains mortality risk during an intense drought. Nat. Commun. 10 (1), 4385.

[69]

Sun, J., Liu, M., Fu, B.J., Kemp, D., Zhao, W.W., Liu, G.H., Han, G.D., Wilkes, A., Lu, X.Y., Chen, Y.C., Cheng, G.W., Zhou, T.C., Hou, G., Zhan, T.Y., Peng, F., Shang, H., Xu, M., Shi, P.L., He, Y.T., Li, M., Wang, J.N., Tsunekawa, A., Zhou, H.K., Liu, Y., Li, Y.R., Liu, S.L., 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65 (16), 1405-1414.

[70]

Tarolli, P., Straffelini, E., 2020. Agriculture in hilly and mountainous landscapes: Threats, monitoring and sustainable management. Geography and Sustainability 1 (1), 70-76.

[71]

Tian, L.H., Wu, W.Y., Zhou, X., Zhang, D.S., Yu, Y., Wang, H.J., Wang, Q.Y., 2019. The ecosystem effects of sand-binding shrub Hippophae rhamnoides in alpine semi-srid desert in the Northeastern Qinghai-Tibet Plateau. Land. 8 (183) 8120183.

[72]

Wang, C.Y., Wei, M., Wu, B.D., Wang, S., Jiang, K., 2019b. Alpine grassland degradation reduced plant species diversity and stability of plant communities in the Northern Tibet Plateau. Acta. Oecol. 98, 25-29.

[73]

Wang, H.W., Qi, Y., Huang, C.L., Li, X.Y., Deng, X.H., Zhan, J.L., 2019a. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China. Sciences in Cold and Arid Regions. 11 (2), 150-158.

[74]

Wang, J., Xu, C., 2017. Geodetector: Principle and prospective. Acta Geographical Sinica 72 (1), 116-134 (in Chinese).

[75]

Wang, J., Zhang, X., Gao, Y., 2020. Relationships between vegetation dynamics and environmental factors on the Tibetan Plateau: A review of research progress and prospects. Earth Science Frontiers doi: 10.13745/j.esf.sf.2020.10.20.

[76]

Wang, J., Zhong, L., 2017. Problems and suggestion for developing ecological construction in land management work. Transactions of the Chinese Society of Agricultural Engineering 33 (5), 308-314 (in Chinese).

[77]

Wang, J., Zhong, L., 2019. Application of ecosystem service theory for ecological pretection and restoration of mountain-river-forest-field-lake-grassland. Acta Ecologica Sinica 39 (23), 8702-8708 (in Chinese).

[78]

Wang, J.F., Hu, Y., 2012. Environmental health risk detection with GeogDetector. Environ. Modell. Softw. 33, 114-115.

[79]

Wang, J.F., Zhang, T.L., Fu, B.J., 2016. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250-256.

[80]

Van Eden, M., Ellis, E., Bruyere, B.L., 2016. The influence of human-elephant conflict on electric fence management and perception among different rural communities in Laikipia County, Kenya. Hum. Dimens Wildl. 21 (4), 283-296.

[81]

Wang, S., Cornelis van Kooten, G., Wilson, B., 2004. Mosaic of reform: forest policy in post- 1978 China. Forest Policy Econ 6 ( 1), 71-83.

[82]

Wang, Z., Li, J., Guo, Y., Liang, L., 2019c. Ecological protection and restoration model of multi-ecological elements in Qinghai-Tibet Plateau: a case study of Lhasa River Basin. Acta Ecologica Sinaca 39 (23), 8966-8974 (in Chinese).

[83]

Wu, C.Y., Cao, G.C., Xue, H.J., Jiang, G., Wang, Q., Yuan, J., Chen, K.L., 2018, Iop., 2017. Evaluation of the Township Proper Carrying Capacity over Qinghai-Tibet plateau by CASA model. 3rd International Conference on Environmental Science and Material Application.

[84]

Wasserman, Larry, 2004. All of Statistics: A Concise Course in Statistical Inference. Springer.

[85]

Wu, J., 2019. Linking landscape, land system and design approaches to achieve sustainability. J. Land Use Sci. 14 (2), 173-189.

[86]

Wu, S., Yang, Q., Zheng, D., 2002. An Index System for Boundaries of Eco-geographical Regions of China. Progress in Geography 21 (4), 302-310.

[87]

Xiao, H., Peng, Z., Xu, C.L., Zhang, D.G., Chai, J.L., Pan, T.T., Yu, X.J., 2018. Yak and Tibetan sheep trampling inhibit reproductive and photosynthetic traits of Medicago ruthenica var. inschanica. Environ. Monit. Assess. 190, 507.

[88]

Xu, G.C., Zhang, J.X., Li, P., Li, Z.B., Lu, K.X., Wang, X.K., Wang, F.C., Cheng, Y.T., Wang, B., 2018. Vegetation restoration projects and their influence on runoffand sediment in China. Ecol. Indic. 95, 233-241.

[89]

Yao, T.D., 2014. TPE international program: A program for coping with major future environmental challenges of The Third Pole region. Prog. Geogr. 33 (7), 884-892 (in Chinese).

[90]

Yao, T.D., Chen, F.H., Cui, P., Ma, Y.M., Xu, B.Q., Zhu, L.P., Zhang, F., Wang, W.C., Ai, L.K., Yang, X.X., 2017. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 32 (9), 924-931 (in Chinese).

[91]

Yao, T.D., Wu, G.J., Xu, B.Q., Wang, W.C., Gao, J., An, B.S., 2019. Asian water tower change and its impacts. Bull. Chin. Acad. Sci. 34 (11), 1023-1029 (in Chinese).

[92]

Zhang, B.G., Wu, X.K., Zhang, G.S., Zhang, W., Liu, G.X., Chen, T., Qin, Y., Zhang, B.L., Sun, L.K., 2017. Response of soil bacterial community structure to permafrost degradation in the upstream regions of the Shule River Basin, Qinghai-Tibet Plateau. Geomicrobiol. J. 34 (4), 300-308.

[93]

Zhang, J.H., Yao, F.M., Zheng, L.Y., Yang, L.M., 2007. Evaluation of grassland dynamics in the Northern-Tibet Plateau of China using remote sensing and climate data. Sensors 7, 3312-3328.

[94]

Zhang, X., Zhao, W.W., Wang, L.X., Liu, Y.X., Liu, Y., Feng, Q., 2019. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Sci. Total Environ. 648, 943-954.

[95]

Zhao, X.H., Deng, H.Z., Wang, W.K., Han, F., Li, C.R., Zhang, H., Dai, Z.X., 2017. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau. Sci. Rep. 7, 3001.

[96]

Zhao, W.W., Liu, Y., Feng, Q., Wang, Y.P., Yang, S.Q., 2018. Ecosystem services for coupled human and environment systems. Prog. Geogr. 37 (1), 139-151 (in Chinese).

[97]

Zhao, Z.J., Shen, G.Z., Tan, L.Y., Kang, D.W., Wang, M.J., Kang, W., Guo, W.X., Zeppel, M.J.B., Yu, Q., Li, J.Q., 2013. Treeline dynamics in response to climate change in the Min Mountains, southwestern China. Bot. Stud. 54, 15.

[98]

Zheng, G.G., Rui, J.L., Fu, J.N., Qing, B.W., Yu, K.H., 2007. Effect of highway construction on plant diversity of grassland communities in the permafrost regions of the Qinghai-Tibet plateau. Rangeland J 29 (2), 161-167.

[99]

Zhou, H.K., Tang, Y.H., Zhao, X.Q., Zhou, L., 2006. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau. Pak. J. Bot. 38 (4), 1055-1069.

[100]

Zhu, J., Shi, J.C., Wang, Y.H., 2012. Subpixel snow mapping of the Qinghai-Tibet Plateau using MODIS data. Int. J. Appl. Earth Obs. 18, 251-262.

PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

/