Complex causes and consequences of rangeland greening in South America - multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends

Wang Li , Robert Buitenwerf , Renata Nicora Chequín , Javier Elias Florentín , Roberto Manuel Salas , Julia Carolina Mata , Li Wang , Zheng Niu , Jens-Christian Svenning

Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (4) : 304 -316.

PDF
Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (4) :304 -316. DOI: 10.1016/j.geosus.2020.12.002
Article
research-article

Complex causes and consequences of rangeland greening in South America - multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends

Author information +
History +
PDF

Abstract

Land-surface greening has been reported globally over the past decades. While often seen to represent ecosystem recovery, the impacts on biodiversity and society can also be negative. Greening has been widely reported from rangelands, where drivers and processes are complex due to its high environmental heterogeneity and societal dynamics. Here, we assess the complexity behind greening and assess its links to various drivers in an iconic, heterogeneous rangeland area, the Iberá Wetlands and surroundings, in Argentina. Time-series satellite imagery over the past 19 years showed overall net greening, but also substantial local browning both in protected and unprotected areas, linking to land use, temporal changes in surface water, fire, and weather. We found substantial woody expansion mainly in the unprotected land, with 37% contributed by tree plantations and the remaining 63% by spontaneous woody expansion, along with widespread transitions from terrestrial land to seasonal surface water. Fire occurrences tended to reduce greening with unprotected areas experiencing widespread and frequent fire. However, protected areas had more browning in unburnt areas than burned areas. Temporal variation in annual precipitation and temperature tended to nonlinearly influence fire occurrences with an interplay of human fire management, further shaping the vegetation greening, pointing to high complexity behind the observed rangeland greening involving interactions among local drivers. Our findings highlight that the observed overall greening is an outcome of multiple trends with clear negative impacts on biodiversity and the local livestock-oriented culture (notably expanding tree plantations) and spontaneous vegetation dynamics, partly involving spontaneous woody expansion. The latter has positive potential for biodiversity and ecosystem services in terms of woodland recovery, but can become negative in such a natural savanna region if expansions develop on a too broad scale, highlighting the importance of ensuring recovery of natural fire and herbivory regimes in protected areas along with sustainable rangeland management elsewhere.

Keywords

South America / Rangeland / Vegetation greening / Climate change / Sustainability / Remote sensing

Cite this article

Download citation ▾
Wang Li, Robert Buitenwerf, Renata Nicora Chequín, Javier Elias Florentín, Roberto Manuel Salas, Julia Carolina Mata, Li Wang, Zheng Niu, Jens-Christian Svenning. Complex causes and consequences of rangeland greening in South America - multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends. Geography and Sustainability, 2020, 1(4): 304-316 DOI:10.1016/j.geosus.2020.12.002

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

The time-series MODIS NDVI and land cover products, and climate data are open-access in Google Earth Engine (https://earthengine.google.com/datasets/). The final fine-scale land cover map of this study is available from the corresponding author upon reasonable request.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by Troels Myndel Petersens Botanisk Taxonomiske Forskningsfond, the Carlsberg Foundation (Semper Ardens project MegaPast2Future, Grant CF16-000), VILLUM FONDEN (VILLUM Investigator project, Grant 16549), the Youth Innovation Promotion Association CAS (Grant 2018084), H2020 Marie Skłodowska-Curie Actions (Grant 840865), National Natural Science Foundation of China (Grant 41701392, Grant 41871347), Major State Basic Research Development Program of China (Grant 2013CB733405), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA19030404). We are very thankful for the constructive feedback from Talía Zamboni and Sofia Heinonen in Fundación Rewilding Argentina.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.geosus.2020.12.002.

References

[1]

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191.

[2]

Abreu, R.C., Hoffmann, W.A., Vasconcelos, H.L., Pilon, N.A., Rossatto, D.R., Durigan, G., 2017. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3 (8), e1701284.

[3]

Anadón, J.D., Sala, O.E., Turner, B., Bennett, E.M., 2014. Effect of woody-plant encroachment on livestock production in North and South America. P. Natl. Acad. Sci. USA 111 (35), 12948-12953.

[4]

Archer, S.R., Andersen, E.M., Predick, K.I., Schwinning, S., Steidl, R.J., Woods, S.R., 2017. Woody plant encroachment:Causes and consequences. In: Briske D.D. (Ed.), Rangeland Systems. Springer, pp. 25-84.

[5]

Bauni, V., Schivo, F., Capmourteres, V., Homberg, M., 2015. Ecosystem loss assessment following hydroelectric dam flooding: The case of Yacyretá Argentina. Remote Sensing Applications: Society and Environment 1, 50-60.

[6]

Beckage, B., Bucini, G., Gross, L.J., Platt, W.J., Higgins, S.I., Fowler, N.L., Slocum, M.G., Farrior, C., 2019. Water limitation, fire, and savanna persistence: A conceptual model. In: Scogings, P.F., Sankaran, M. (Eds.), Savanna Woody Plants and Large Herbivores, pp. 643-659.

[7]

Bernardi, R.E., Holmgren, M., Arim, M., Scheffer, M., 2016. Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecol. Manag. 363, 212-217.

[8]

Bhola, N., Ogutu, J.O., Said, M.Y., Piepho, H.P., Olff, H., 2012. The distribution of large herbivore hotspots in relation to environmental and anthropogenic correlates in the Mara region of Kenya. J. Anim. Ecol. 81 (6), 1268-1287.

[9]

Blanco, D.E., Parera, A.F., Acerbi, M., 2003. La inundación silenciosa. El aumento de las aguas en los Esteros del Ibera: La nueva amenaza de la represa Yacyreta. Version ampliada y actualizada. Fundacion Vida Silvestre Argentina. Buenos Aires 56.(in Spain)

[10]

Bond, W.J., Midgley, G.F., 2000. A proposed CO2 -controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biol. 6 (8), 865-869.

[11]

Bond, W.J., Parr, C.L., 2010. Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143 (10), 2395-2404.

[12]

Bond, W.J., Stevens, N., Midgley, G.F., Lehmann, C.E.R., 2019. The trouble with trees: Afforestation plans for Africa. Trends Ecol. Evol. 34 (11), 963-965.

[13]

Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J.R., Fensholt, R., 2017. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1 (4), 0081.

[14]

Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N., Herold, M., Fritz, S., 2019. Copernicus Global Land Service: Land Cover 100m: Epoch 2015: Globe. Version V2. 0.2.

[15]

Buitenwerf, R., Bond, W., Stevens, N., Trollope, W., 2012. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biol. 18 (2), 675-684.

[16]

Buitenwerf, R., Sandel, B., Normand, S., Mimet, A., Svenning, J.C., 2018. Land-surface greening suggests vigorous woody regrowth throughout European semi-natural vegetation. Global Change Biol. 24 (12), 5789-5801.

[17]

Cabral, A., De Miguel, J., Rescia, A., Schmitz, M., Pineda, F., 2003. Shrub encroachment in Argentinean savannas. J. Veg. Sci. 14 (2), 145-152.

[18]

Canziani, G.A., Ferrati, R.M., Rossi, C., Ruiz-Moreno, D., 2006. The influence of climate and dam construction on the Ibera wetlands. Argentina. Reg. Environ. Change 6 (4), 181-191.

[19]

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R., Myneni, R.B., 2019. China and India lead in greening of the world through land-use management. Nature Sustain. 2 (2), 122-129.

[20]

Conradi, T., 2018. Woody encroachment in African savannas: Towards attribution to multiple drivers and a mechanistic model. J. Biogeogr. 45 (6), 1231-1233.

[21]

Daskin, J.H., Stalmans, M., Pringle, R.M., 2016. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104 (1), 79-89.

[22]

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M.E., Dent, D.L., 2011. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115 (2), 692-702.

[23]

Devine, A.P., McDonald, R.A., Quaife, T., Maclean, I.M., 2017. Determinants of woody encroachment and cover in African savannas. Oecologia 183 (4), 939-951.

[24]

Durigan, G., Ratter, J.A., 2016. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53 (1), 11-15.

[25]

Eddy, I.M.S., Gergel, S.E., Coops, N.C., Henebry, G.M., Levine, J., Zerriffi, H., Shibkov, E., 2017. Integrating remote sensing and local ecological knowledge to monitor rangeland dynamics. Ecol. Indic. 82, 106-116.

[26]

Fagan, M.E., 2020. A lesson unlearned? Underestimating tree cover in dryland biases global restoration maps. Global Change Biol. 26 (9), 4679-4690.

[27]

Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., , Y., Zeng, Y., Li, Y., Jiang, X., Wu, B., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Cl. Change 6 (11), 1019-1022.

[28]

Fernandes, G.W., Coelho, M.S., Machado, R.B., Ferreira, M.E., Aguiar, L.d.S., Dirzo, R., Scariot, A., Lopes, C.R., 2016. Afforestation of savannas: An impending ecological disaster. Natureza & Conservacao 14 (2), 146-151.

[29]

Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., Reichstein, M., 2016. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351 (6274), 696-699.

[30]

Fuhlendorf, S.D., Engle, D.M., 2001. Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns. BioScience 51 (8), 625-632.

[31]

Fuhlendorf, S.D., Smeins, F.E., 1999. Scaling effects of grazing in a semi-arid grassland. J. Veg. Sci. 10 (5), 731-738.

[32]

Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., Verdin, A.P., 2014. A quasi-global precipitation time series for drought monitoring. US Geological Survey.

[33]

García Criado, M., Myers-Smith, I.H., Bjorkman, A.D., Lehmann, C.E., Stevens, N., 2020. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecol. Biogeogr. 29 (5), 925-943.

[34]

Giglio, L., Loboda, T., Roy, D.P., Quayle, B., Justice, C.O., 2009. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 113 (2), 408-420.

[35]

Godde, C.M., Garnett, T., Thornton, P.K., Ash, A.J., Herrero, M., 2018. Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Glob. Food Secur. 16, 93-105.

[36]

González-Roglich, M., Swenson, J.J., Villarreal, D., Jobbágy, E.G., Jackson, R.B., 2015. Woody plant-cover dynamics in argentine savannas from the 1880s to 2000s: The interplay of encroachment and agriculture conversion at varying scales. Ecosystems 18 (3), 481-492.

[37]

Guido, A., Salengue, E., Dresseno, A., 2017. Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics. Perspect. Ecol. Conser. 15 (1), 52-55.

[38]

Hegerl, G.C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M.P., Kovats, R., Parmesan, C., Pierce, D.W., Stott, P.A., 2010. Good practice guidance paper on detection and attribution related to anthropogenic climate change. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change. IPCC Working Group I Technical Support Unit, Bern.

[39]

Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., 2018. Impacts of 1.5°C global warming on natural and human systems. Global warming of 1.5°C. An IPCC Special Report.

[40]

Holechek, J.L., de Souza Gomes, H., Molinar, F., Galt, D., 1998. Grazing intensity: Critique and approach. Rangelands 20 (5), 15-18.

[41]

Holgerson, M.A., Raymond, P.A., 2016. Large contribution to inland water CO2 and CH 4 emissions from very small ponds. Nature Geosci. 9 (3), 222-226.

[42]

Holl, K.D., Brancalion, P.H.S., 2020. Tree planting is not a simple solution. Science 368 (6491), 580-581.

[43]

Kissling, W.D., Carl, G., 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol. Biogeogr. 17 (1), 59-71.

[44]

Kulmatiski, A., Beard, K.H., 2013. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3 (9), 833-837.

[45]

Kunst, C., 2011. Ecología y uso del fuego en la región chaqueña Argentina. Boletín Informativo CIDEU (10) 81-105.

[46]

Li, W., Buitenwerf, R., Munk, M., Amoke, I., Bøcher, P.K., Svenning, J.C., 2020a. Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Global Environ. Chang. 60, 102030.

[47]

Li, W., Buitenwerf, R., Munk, M., Bøcher, P.K., Svenning, J.C., 2020b. Deep-learning based high-resolution mapping shows woody vegetation densification in greater Maasai Mara ecosystem. Remote Sens. Environ. 247, 111953.

[48]

Lunt, I.D., Winsemius, L.M., McDonald, S.P., Morgan, J.W., Dehaan, R.L., 2010. How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005. J. Biogeogr. 37 (4), 722-732.

[49]

Macias-Fauria, M., Forbes, B.C., Zetterberg, P., Kumpula, T., 2012. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Change 2 (8), 613-618.

[50]

Macias, D., Mazía, N., Jacobo, E., 2014. Grazing and neighborhood interactions limit woody encroachment in wet subtropical savannas. Basic Appl. Ecol. 15 (8), 661-668.

[51]

Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate change, deforestation, and the fate of the Amazon. Science 319 (5860), 169-172.

[52]

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13 (3), 245-259.

[53]

McCollum III, F.T., Gillen, R.L., Karges, B.R., Hodges, M.E., 1999. Stocker cattle response to grazing management in tallgrass prairie. J. Range. Manag. 52 (2), 120-126.

[54]

Mishra, N.B., Mainali, K.P., 2017. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 587, 326-339.

[55]

Montroull, N.B., Saurral, R.I., Camilloni, I.A., Grimson, R., Vasquez, P., 2013. Assessment of climate change on the future water levels of the Iberáwetlands, Argentina, during the twenty-first century. Int. J. River Basin Manage. 11 (4), 401-410.

[56]

Myers-Smith, I.H., Kerby, J.T., Phoenix, G.K., Bjerke, J.W., Epstein, H.E., Assmann, J.J., John, C., Andreu-Hayles, L., Angers-Blondin, S., Beck, P.S.A., Berner, L.T., Bhatt, U.S., Bjorkman, A.D., Blok, D., Bryn, A., Christiansen, C.T., Cornelissen, J.H.C., Cunliffe, A.M., Elmendorf, S.C., Forbes, B.C., Goetz, S.J., Hollister, R.D., de Jong, R., Loranty, M.M., Macias-Fauria, M., Maseyk, K., Normand, S., Olofsson, J., Parker, T.C., Parmentier, F.-J.W., Post, E., Schaepman-Strub, G., Stordal, F., Sullivan, P.F., Thomas, H.J.D., Tømmervik, H., Treharne, R., Tweedie, C.E., Walker, D.A., Wilmking, M., Wipf, S., 2020. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10 (2), 106-117.

[57]

Neiff, J., de Neiff, A.P., 2006. Situación ambiental en la ecorregión Iberá. La situación ambiental Argentina 2005 (01), 177-184.

[58]

O’Connor, T. G., Puttick, J. R., Hoffman, M. T., 2014. Bush encroachment in southern Africa: Changes and causes. Afr. J. Range. For. Sci. 31 (2), 67-88.

[59]

Patten, R.S., Ellis, J.E., 1995. Patterns of species and community distributions related to environmental gradients in an arid tropical ecosystem. Vegetatio 117 (1), 69-79.

[60]

Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S., Damoulas, T., Knight, S.J., Goetz, S.J., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3 (7), 673-677.

[61]

Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540 (7633), 418-422.

[62]

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14-27.

[63]

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J., Myneni, R.B., Peng, S., Poulter, B., Shi, X., Xiao, Z., Zeng, N., Zeng, Z., Wang, Y., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biol. 21 (4), 1601-1609.

[64]

Putuhena, W.M., Cordery, I., 2000. Some hydrological effects of changing forest cover from eucalypts to Pinus radiata. Agr. Forest Meteorol. 100 (1), 59-72.

[65]

Rangel, T.F., Diniz-Filho, J.A.F., Bini, L.M., 2010. SAM: A comprehensive application for spatial analysis in macroecology. Ecography 33 (1), 46-50.

[66]

Sandel, B., Svenning, J.C., 2013. Human impacts drive a global topographic signature in tree cover. Nat. Commun. 4, 2474.

[67]

Sloat, L.L., Gerber, J.S., Samberg, L.H., Smith, W.K., Herrero, M., Ferreira, L.G., Godde, C.M., West, P.C., 2018. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8 (3), 214-218.

[68]

Soares-Filho, B.S., Rodrigues, H.O., Costa, W., 2009. Modeling environmental dynamics with Dinamica EGO. In: Centro de Sensoriamento Remoto. Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, p. 115.

[69]

Stevens, N., Erasmus, B., Archibald, S., Bond, W., 2016a. Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philos. T. R. Soc. B 371, 20150437.

[70]

Stevens, N., Lehmann, C.E.R., Murphy, B.P., Durigan, G., 2016b. Savanna woody encroachment is widespread across three continents. Global Change Biol. 23 (1), 235-244.

[71]

Stow, D.A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., 2004. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 89 (3), 281-308.

[72]

Tsegaye, D., Moe, S.R., Vedeld, P., Aynekulu, E., 2010. Land-use/cover dynamics in Northern Afar rangelands, Ethiopia. Agr. Ecos. Environ. 139 (1-2), 174-180.

[73]

Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from cimate change and population growth. Science 289 (5477), 284-288.

[74]

Veldman, J.W., Overbeck, G., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G.W., Durigan, G., Buisson, E., Putz, F.E., Bond, W.J., 2015. Tyranny of trees in grassy biomes. Science 347 (6221), 484-485.

[75]

Venter, Z.S., Cramer, M.D., Hawkins, H.J., 2018. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272.

[76]

Vickers, H., Høgda, K.A., Solbø, S., Karlsen, S.R., Tømmervik, H., Aanes, R., Hansen, B.B., 2016. Changes in greening in the high Arctic: Insights from a 30 year AVHRR max NDVI datasIet for Svalbard. Environ. Res. Lett. 11 (10), 105004.

[77]

Walker, B., Holling, C.S., Carpenter, S.R., Kinzig, A.P., 2004. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 9 (2), 5.

[78]

Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., Wang, G., 2020. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 8, 14.

[79]

Wei, F., Wang, S., Fu, B., Brandt, M., Pan, N., Wang, C., Fensholt, R., 2020. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Global Change Biol. 26 (8), 4495-4505.

[80]

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W., 2015. Time-lag effects of global vegetation responses to climate change. Global Change Biol. 21 (9), 3520-3531.

[81]

Zamboni, T., Di Martino, S., Jiménez-Pérez, I., 2017. A review of a multispecies reintroduction to restore a large ecosystem: The IberáRewilding Program (Argentina). Perspect. Ecol. Conser. 15 (4), 248-256.

[82]

Zeng, Y., Yang, X., Fang, N., Shi, Z., 2020. Large-scale afforestation significantly increases permanent surface water in China’s vegetation restoration regions. Agr. Forest Meteorol. 290, 108001.

[83]

Zhang, W., Brandt, M., Penuelas, J., Guichard, F., Tong, X., Tian, F., Fensholt, R., 2019. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671.

[84]

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6 (8), 791-795.

PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

/