Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management

Wei Ren , Kamaljit Banger , Bo Tao , Jia Yang , Yawen Huang , Hanqin Tian

Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (1) : 59 -69.

PDF
Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (1) :59 -69. DOI: 10.1016/j.geosus.2020.03.001
Article
research-article

Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management

Author information +
History +
PDF

Abstract

Soil organic carbon (SOC) in croplands is a key property of soil quality for ensuring food security and agricultural sustainability, and also plays a central role in the global carbon (C) budget. When managed sustainably, soils may play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into the atmosphere. However, the magnitude and spatio-temporal patterns of global cropland SOC are far from well constrained due to high land surface heterogeneity, complicated mechanisms, and multiple influencing factors. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse spatially-explicit gridded environmental data to quantify the long-term trend of SOC storage in global cropland area during 1901-2010 and identify the relative impacts of climate change, elevated CO2, nitrogen deposition, land cover change, and land management practices such as nitrogen fertilizer use and irrigation. Model results show that the total SOC and SOC density in the 2000s increased by 125% and 48.8%, respectively, compared to the early 20th century. This SOC increase was primarily attributed to cropland expansion and nitrogen fertilizer use. Factorial analysis suggests that climate change reduced approximately 3.2% (or 2,166 Tg C) of the total SOC over the past 110 years. Our results indicate that croplands have a large potential to sequester C through implementing better land use management practices, which may partially offset SOC loss caused by climate change.

Keywords

Global cropland / Soil organic carbon / Climate change / Land management / Process-based modeling

Cite this article

Download citation ▾
Wei Ren, Kamaljit Banger, Bo Tao, Jia Yang, Yawen Huang, Hanqin Tian. Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geography and Sustainability, 2020, 1(1): 59-69 DOI:10.1016/j.geosus.2020.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Interest

The authors declare no conflict of interest.

Acknowledgments

This work was supported by NASA Kentucky NNX15AR69H, NSF grant nos. 1940696, 1903722, and 1243232; and Andrew Carnegie Fellowship Award no. G-F-19-56910. The statements made and views expressed are solely the responsibility of the authors.

References

[1]

Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.A., Tao, B., Hui, D., Yang, J., Matocha, C., 2019. Responses of soil carbon sequestration to climate -smart agriculture practices: A meta -analysis. Global Change Biol. 25 (8), 2591-2606.

[2]

Banger, K., Tian, H.Q., Tao, B., Lu, C.Q., Ren, W., Yang, J., 2015a. Magnitude, Spatiotemporal Patterns, and Controls for Soil Organic Carbon Stocks in India during 1901-2010. Soil Sci. Soc. Am. J. 79 (3), 864-875.

[3]

Banger, K., Tian, H.Q., Tao, B., Ren, W., Pan, S.F., Dangal, S., Yang, J., 2015b. Terrestrial net primary productivity in India during 1901-2010: contributions from multiple environmental changes. Climatic Change 132 (4), 575-588.

[4]

Banger, K., Toor, G., Biswas, A., Sidhu, S., Sudhir, K., 2010. Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics. Nutrient Cycl. Agroecosyst. 86 (3), 391-399.

[5]

Board on Sustainable development, Policy Division, National Research Council, 2000. Board on Sustainable development, Policy Division. National Academy Press, Washington, D.C.

[6]

Branca, G., McCarthy, N., Lipper, L., Jolejole, M.C., 2011. Climate-Smart Agriculture: A Synthesis of Empirical Evidence of Food Security and Mitigation Benefits from Improved Cropland Management. FAO.

[7]

Buyanovsky, G.A., Wagner, G., 1998. Changing role of cultivated land in the global carbon cycle. Biol. Fertil. Soils 27 (3), 242-245.

[8]

Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., Sohlberg, R.A., 2009. A new global raster water mask at 250 m resolution. Int. J. Digital Earth 2 (4), 291-308.

[9]

Chantigny, M.H., 2003. Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113 (3-4), 357-380.

[10]

Chen, G.S., Tian, H.Q., Zhang, C., Liu, M.L., Ren, W., Zhu, W.Q., Chappelka, A.H., Prior, S.A., Lockaby, G.B., 2012. Drought in the Southern United States over the 20 th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change 114 (2), 379-397.

[11]

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (7081), 165-173.

[12]

de Noblet-Ducoudré, N., Gervois, S., Ciais, P., Viovy, N., Brisson, N., Seguin, B., Perrier, A., 2004. Coupling the Soil-Vegetation-Atmosphere-Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24 (6-7), 397-407.

[13]

Drewniak, B.A., Mishra, U., Song, J., Prell, J., Kotamarthi, V.R., 2015. Modeling the impact of agricultural land use and management on US carbon budgets. Biogeosciences 12 (7), 2119-2129.

[14]

FAO, IIASA, ISRIC, ISSCAS, JRC, 2012. Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

[15]

Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The nitrogen cascade. Bioscience 53 (4), 341-356.

[16]

Global Soil Data Task, 2014. Global soil data products CD-ROM contents (IGBP-DIS). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. doi: 10.3334/ORNLDAAC/565.

[17]

Han, P., Zhang, W., Wang, G., Sun, W., Huang, Y., 2016. Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis. Sci. Rep. 6 (1), 27199.

[18]

Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J.G., Walsh, M.G., 2014. SoilGrids1km —global soil information based on automated mapping. Plos One 9 (8), e105992.

[19]

Huang, Y., Ren, W., Wang, L., Hui, D., Grove, J., Yang, J., Tao, B., Goff, B., 2018. Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agric. Ecosyst. Environ. 268, 144-153.

[20]

Hurtt, G.C., Chini, L.P., Frolking, S., Betts, R., Feddema, J., Fischer, G., Fisk, J., Hibbard, K., Houghton, R., Janetos, A., 2011. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109 (1-2), 117-161.

[21]

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., Harrison, R.B., Guerrini, I.A., d. Richter Jr, D., Rustad, L., 2014. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 468, 376-383.

[22]

Jastrow, J., Miller, R., Owensby, C., 2000. Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland. Plant Soil 224 (1), 85-97.

[23]

Jastrow, J.D., Michael Miller, R., Matamala, R., Norby, R.J., Boutton, T.W., Rice, C.W., Owensby, C.E., 2005. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biol. 11 (12), 2057-2064.

[24]

Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10 (2), 423-436.

[25]

Jung, M., Henkel, K., Herold, M., Churkina, G., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Rem. Sens. Environ. 101 (4), 534-553.

[26]

Klein Goldewijk, K., Beusen, A., Van Drecht, G., De Vos, M., 2011. The HYDE 3.1 spatially explicit database of human -induced global land -use change over the past 12,000 years. Global Ecol. Biogeogr. 20 (1), 73-86.

[27]

Lal, R., 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304 (5677), 1623-1627.

[28]

Lal, R., Follett, R.F., Stewart, B.A., Kimble, J.M., 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci. 172 (12), 943-956.

[29]

Leff, B., Ramankutty, N., Foley, J.A., 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cy. 18 (1), GB1009.

[30]

Lehner, B., Döll, P., 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296 (1-4), 1-22.

[31]

Lipper, L., et al., 2014. Climate-smart agriculture for food security. Nat. Climate Change 4 (12), 1068-1072.

[32]

Liu, J.X., Price, D.T., Chen, J.A., 2005. Nitrogen controls on ecosystem carbon sequestration: a model implementation and application to Saskatchewan, Canada. Ecol. Model. 186 (2), 178-195.

[33]

Liu, M.L., Tian, H.Q., Yang, Q.C., Yang, J., Song, X., Lohrenz, S.E., Cai, W.J., 2013. Long-term trends in evapotranspiration and runoffover the drainage basins of the Gulf of Mexico during 1901-2008. Water Resour. Res. 49 (4), 1988-2012.

[34]

Lobell, D.B., Gourdji, S.M., 2012. The influence of climate change on global crop productivity. Plant Physiol. 160 (4), 1686-1697.

[35]

Lobell, D.B., Roberts, M.J., Schlenker, W., Braun, N., Little, B.B., Rejesus, R.M., Hammer, G.L., 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344 (6183), 516-519.

[36]

Lobell, D.B., Schlenker, W., Costa-Roberts, J., 2011. Climate Trends and Global Crop Production Since 1980. Science 333 (6042), 616-620.

[37]

Lu, C.Q., Tian, H.Q., Liu, M.L., Ren, W., Xu, X.F., Chen, G.S., Zhang, C., 2012. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes. Ecol. Appl. 22 (1), 53-75.

[38]

Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., Zhang, L., 2009. Parameter identifiability, constraint, and equifinality in data assimilation with ecosystem models. Ecol. Appl. 19 (3), 571-574.

[39]

Mandal, B., Majumder, B., Bandyopadhyay, P., Hazra, G., Gangopadhyay, A., Samantaray, R., Mishra, A., Chaudhury, J., Saha, M., Kundu, S., 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long -term experiments in subtropical India. Global Change Biol. 13 (2), 357-369.

[40]

Morgan, J.A., Mosier, A.R., Milchunas, D.G., LeCain, D.R., Nelson, J.A., Parton, W.J., 2004. CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecol. Appl. 14 (1), 208-219.

[41]

Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E., O’Neill, E.G., 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc. Natl. Acad. Sci. U.S.A. 101 (26), 9689-9693.

[42]

Ogle Stephen, M., Breidt F, J.A.Y., Easter, M., Williams, S., Killian, K., Paustian, K., 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biol. 16 (2), 810-822.

[43]

Parton, W., Scurlock, J., Ojima, D., Gilmanov, T., Scholes, R., Schimel, D.S., Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cy. 7 (4), 785-809.

[44]

Pan, S.F., et al., 2014. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st Century. Plos One 9 (11), e112810.

[45]

Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S., 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Quant. Model. Soil Forming Processes 39, 147-167.

[46]

Paustian, K., Andren, O., Janzen, H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M., Woomer, P., 1997. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use manage. 13 (4), 230-244.

[47]

Petersen, B.M., Berntsen, J., Hansen, S., Jensen, L.S., 2005. CN-SIM —a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biol. Biochem. 37 (2), 359-374.

[48]

Ramankutty, N., Foley, J.A., 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cy. 13 (4), 997-1027.

[49]

Regnier, P., Friedlingstein, P., Ciais, P., et al., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6 (8), 597-607.

[50]

Ren, W., 2019. Towards an Integrated Agroecosystem Modeling Approach for ClimateSmart Agriculture Management. In: Wendroth, O., Lascano, R.J., Ma, L. (Eds.), Bridging Among Disciplines by Synthesizing Soil and Plant Processes. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc, Madison, WI. doi: 10.2134/advagricsystmodel8.2018.0004.

[51]

Ren, W., Tian, H.Q., Cai, W.J., Lohrenz, S.E., Hopkinson, C.S., Huang, W.J., Yang, J., Tao, B., Pan, S.F., He, R.Y., 2016. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing. Global Biogeochem. Cy. 30 (9), 1288-1299.

[52]

Ren, W., Tian, H.Q., Liu, M.L., Zhang, C., Chen, G.S., Pan, S.F., Felzer, B., Xu, X.F., 2007. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J. Geophys. Res. 112, D22S09.

[53]

Ren, W., Tian, H.Q., Tao, B., Huang, Y., Pan, S.F., 2012. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Global Change Biol. 18 (9), 2945-2957.

[54]

Ren, W., Tian, H.Q., Xu, X.F., Liu, M.L., Lu, C.Q., Chen, G.S., Melillo, J., Reilly, J., Liu, J.Y., 2011. Spatial and temporal patterns of CO2 and CH 4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus B 63 (2), 222-240.

[55]

Siebert, S., Henrich, V., Frenken, K., Burke, J., 2013. Update of the Global Map of Irrigation Areas to version 5. Institute of Crop Science and Resource Conservation Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

[56]

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79 (1), 7-31.

[57]

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241 (2), 155-176.

[58]

Smith, P., Fang, C., Dawson, J.J., Moncrieff, J.B., 2008. Impact of global warming on soil organic carbon. Adv. Agron. 97, 1-43.

[59]

Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., van Egmond, F., McNeill, S., Kuhnert, M., 2019. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biol. 26 (1), 219-241.

[60]

Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S., 2003. Global distribution of C3 and C 4 vegetation: carbon cycle implications. Global Biogeochem. Cy. 17 (1), 1006.

[61]

Tao, B., Tian, H.Q., Chen, G.S., Ren, W., Lu, C.Q., Alley, K.D., Xu, X.F., Liu, M.L., Pan, S.F., Virji, H., 2013. Terrestrial carbon balance in tropical Asia: Contribution from cropland expansion and land management. Global Planet Change 100, 85-98.

[62]

Tian, H.Q., Chen, G.S., Liu, M.L., Zhang, C., Sun, G., Lu, C.Q., Xu, X.F., Ren, W., Pan, S.F., Chappelka, A., 2010a. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecol. Manag. 259 (7), 1311-1327.

[63]

Tian, H.Q., Liu, M., Zhang, C., Ren, W., Xu, X., Chen, G., Lu, C., Tao, B., 2010b. The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geogr. Sinica 65 (9), 1027-1047.

[64]

Tian, H.Q., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., Lu, C., 2010c. Spatial and temporal patterns of CH 4 and N2O fluxes in terrestrial ecosystems of North America during 1979-2008: application of a global biogeochemistry model. Biogeosciences 7 (9), 2673-2694.

[65]

Tian, H.Q., Lu, C.Q., Chen, G.S., Xu, X.F., Liu, M.L., Ren, W., Tao, B., Sun, G., Pan, S.F., Liu, J.Y., 2011a. Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology 4 (2), 322-340.

[66]

Tian, H.Q., et al., 2011b. China’s terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochem. Cy. 25, GB1007.

[67]

Tian, H.Q., et al., 2015. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochem. Cy. 29 (6), 775-792.

[68]

Tian, H.Q., et al., 2016. Climate extremes and ozone pollution: a growing threat to China’s food security. Ecosyst. Health Sustain. 2 (1), e01203.

[69]

Wang, G., Zhang, W., Sun, W., Li, T., Han, P., 2017. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems. Atmos. Chem. Phys. 17 (19), 11849-11859.

[70]

Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N., Verardo, D.J., Dokken, D.J., 2000. Land use, land-use change and forestry:a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

[71]

Wei, Y., Liu, S., Huntzinger, D., Michalak, A., Viovy, N., Post, W., Schwalm, C., Schaefer, K., Jacobson, A., Lu, C., 2014. NACP MsTMIP: Global and North American driver data for multi-model intercomparison. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. doi: 10.3334/ORNLDAAC/1220.

[72]

Xu, X.F., Tian, H.Q., Chen, G.S., Liu, M.L., Ren, W., Lu, C.Q., Zhang, C., 2012. Multifactor controls on terrestrial N2O flux over North America from 1979 through 2010. Biogeosciences 9 (4), 1351-1366.

[73]

Xu, X.F., Tian, H.Q., Zhang, C., Liu, M.L., Ren, W., Chen, G.S., Lu, C.Q., Bruhwiler, L., 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences 7 (11), 3637-3655.

[74]

Yang, J., Tian, H.Q., Tao, B., Ren, W., Lu, C.Q., Pan, S.F., Wang, Y.H., Liu, Y.Q., 2015a. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochem. Cy. 29 (9), 1549-1566.

[75]

Yang, J., Tian, H.Q., Tao, B., Ren, W., Pan, S.F., Liu, Y.Q., Wang, Y.H., 2015b. A growing importance of large fires in conterminous United States during 1984-2012. J. Geophys. Res.-Biogeosci. 120 (12), 2625-2640.

[76]

Zhang, B., Tian, H., Ren, W., Tao, B., Lu, C., Yang, J., Banger, K., Pan, S., 2016. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global Biogeochem. Cy. 30 (9), 1246-1263.

[77]

Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7 (1), 1-8.

PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

/