Promoting Geography for Sustainability

Bojie Fu

Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (1) : 1 -7.

PDF
Geography and Sustainability ›› 2020, Vol. 1 ›› Issue (1) :1 -7. DOI: 10.1016/j.geosus.2020.02.003
Editorial
research-article

Promoting Geography for Sustainability

Author information +
History +
PDF

Abstract

The discipline of geography encompasses both natural and social sciences and has the natural advantage of enabling the study of sustainability from a transdisciplinary perspective. There are great opportunities for geographers to participate in sustainability research. However, while geographers have set sustainability goals, they have rarely clarified the details for reaching those goals. Current knowledge on the relationship between humans and the environment and the methodologies for studying this relationship are inadequate to solve the transdisciplinary questions in sustainability science. Five research areas: geographical processes; ecosystem services and human wellbeing; human-environmental systems; sustainable development; and geo-data and modelling for sustainability are proposed as those needed to help geography achieve sustainability. The key objective of promoting geography for sustainability is to reveal the mechanisms of human-environmental system dynamics. This depends on understanding the processes in the natural and social systems and their mutual feedback as well as clarifying the relationships between the structures, functional characteristics and interactions in the human-environmental systems at multiple scales. The advancement of geography and its methodologies and technologies will provide a more profound understanding of the future. Geographers have the responsibility of promoting the discipline as the key pathway for carrying natural and social sciences towards sustainability.

Keywords

geographical process / ecosystem service / human-environmental system / sustainable development / integrated model / transdisciplinary

Cite this article

Download citation ▾
Bojie Fu. Promoting Geography for Sustainability. Geography and Sustainability, 2020, 1(1): 1-7 DOI:10.1016/j.geosus.2020.02.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The author declares no conflict of interest.

Acknowledgements

This research was funded by the National Key Research and Development Programme of China (No. 2017YFA0604700), the National Natural Science Foundation of China (No. 41991230) and the Fundamental Research Funds for the Central Universities in China.

References

[1]

Adger, W.N., 2006. Vulnerability. Global Environmental Change 16 (3), 268-281.

[2]

Allen, C., Metternicht, G., Wiedmann, T., 2016. National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modelling tools. Environ. Sci. Policy 66, 199-207.

[3]

Allen, C, Metternicht, G, Wiedmann, T, Pedercini, M, 2019. Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging. Nat. Sustainability 2 (11), 1041-1050.

[4]

Bagstad, K.J., Johnson, G.W., Voigt, B., Villa, F., 2013. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosyst. Serv. 4, 117-125.

[5]

Bleischwitz, R., Spataru, C., VanDeveer, S.D., Obersteiner, M., van der Voet, E., Johnson, C., Andrews-Speed, P., Boersma, T., Hoff, H., van Vuuren, D.P., 2018. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustainability 1 (12), 737-743.

[6]

Bodin, Ö, 2017. Collaborative environmental governance: achieving collective action in social-ecological systems. Science 357 (6352), eaan1114.

[7]

Brantley, S.L., Eissenstat, D.M., Marshall, J.A., Godsey, S.E., Balogh-Brunstad, Z., Karwan, D.L., Papuga, S.A., Roering, J., Dawson, T.E., Evaristo, J., Chadwick, O., McDonnell, J.J., Weathers, K.C., 2017. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14 (22), 5115-5142.

[8]

Chorover, J., Derry, L.A., McDowell, W.H., 2017. Concentration-discharge relations in the critical zone: implications for resolving critical zone structure, function, and evolution. Water Resour. Res. 53 (11), 8654-8659.

[9]

Christopher, L., Jacopo, B., Megan, K., Alfonso, M., Benjamin, R., Richard, R., L., S.J., J., T.T., 2019. The U.S. food-energy-water system: A blueprint to fill the mesoscale gap for science and decision-making. Ambio 48, 251-263.

[10]

Collste, D., Pedercini, M., Cornell, S.E., 2017. Policy coherence to achieve the SDGs: using integrated simulation models to assess effective policies. Sustainability Sci. 12 (6), 921-931.

[11]

Coopman, A., Osborn, D., Ullah, F., Auckland, E., Long, G., 2016. Seeing the whole: implementing the SDGs in an integrated and coherent way. Stakeholder Forum. Biregional and Newcastle University, London.

[12]

Costanza, R., de Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S., Turner, R.K., 2014. Changes in the global value of ecosystem services. Global Environ. Change 26, 152-158.

[13]

Daily, G.C., Matson, P.A., 2008. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. 105 (28), 9455-9456.

[14]

Day, T., 2017. The contribution of physical geographers to sustainability research. SustainabilityBasel 9 (10), 1851.

[15]

Fan, J., 2016. Chinese human geography and its contributions. J. Geog. Sci. 26 (8), 987-1000.

[16]

Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., , Y., Zeng, Y., Li, Y., Jiang, X., Wu, B., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6 (11), 1019-1022.

[17]

Folke, C., Hahn, T., Olsson, P., Norberg, J., 2005. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 30, 441-473.

[18]

Fu, B., Li, Y., 2016. Bidirectional coupling between the Earth and human systems is essential for modeling sustainability. Natl. Sci. Rev. 3 (4), 397-398.

[19]

Fu, B., Wang, S., Zhang, J., Hou, Z., Li, J., 2019. Unravelling the complexity in achieving the 17 sustainable-development goals. Nat. Sci. Rev. 6 (3), 386-388.

[20]

Fu, B., Wei, Y., 2018. Editorial overview: Keeping fit in the dynamics of coupled natural and human systems. Curr. Opin. Environ. Sustainability 33, A1-A4.

[21]

Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., Skinner, D., 2015. Ecosystem services in changing land use. J. Soils Sediments 15 (4), 833-843.

[22]

Fu, B., Pan, N., 2016. Integrated studies of physical geography in China: Review and prospects. J. Geog. Sci. 26 (7), 771-790.

[23]

Gao, L., Bryan, B.A., 2017. Finding pathways to national-scale land-sector sustainability. Nature 544 (7649), 217.

[24]

Griggs, D., Stafford-Smith, M., Gaffney, O., Rockstrom, J., Ohman, M.C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., Noble, I., 2013. Sustainable development goals for people and planet. Nature 495 (7441), 305-307.

[25]

Grunwald, S., Mizuta, K., Ceddia, M.B., Pinheiro, É.F.M., Wilcox, R.K.K., Gavilan, C.P., Ross, C.W., Clingensmith, C.M., 2017. The meta soil model:an integrative multimodel framework for soil security. In: Field D., Morgan C., McBratney A. (Global Soil Security.Eds.), Progress in Soil Science Series. Springer, Rotterdam, pp. 305-317.

[26]

Gunderson, L.H., Holling, C.S., 2003. Panarchy: understanding transformations in human and natural systems. Ecol. Econ. 114 (2), 488-491.

[27]

Guo, H., 2018. Steps to the digital Silk Road. Nature 554 (7690), 25-27.

[28]

Haines-Young, R., Potschin, M., 2010. The links between biodiversity, ecosystem services and human well-being. In: Raffaelli, D.G., Frid, C.L.J. (Eds.), Ecosystem Ecology: A new synthesis. Cambridge University Press, pp. 110-139.

[29]

Hansen, T., Coenen, L., 2015. The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Trans. 17, 92-109.

[30]

Kates, R.W., 2011. What kind of a science is sustainability science? Proc. Natl. Acad. Sci. U.S.A. 108 (49), 19449-19450.

[31]

Lewis, S.L., Maslin, M.A., 2015. Defining the Anthropocene. Nature 519 (7542), 171-180.

[32]

Li, C., Zheng, H., Li, S., Chen, X., Li, J., Zeng, W., Liang, Y., Polasky, S., Feldman, M.W., Ruckelshaus, M., 2015. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. 112 (24), 7396-7401.

[33]

Li, Y., Kalnay, E., Motesharrei, S., Rivas, J., Kucharski, F., Kirk-Davidoff, D., Bach, E., Zeng, N., 2018. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361 (6406), 1019-1022.

[34]

Liu, J., 2017. Integration across a metacoupled world. Ecol. Soc. 22 (4), 29.

[35]

Liu, J., Mao, G., Hoekstra, A.Y., Wang, H., Wang, J., Zheng, C., Van Vliet, M.T., Wu, M., Ruddell, B., Yan, J., 2018. Managing the energy-water-food nexus for sustainable development. Appl. Energy 210, 377-381.

[36]

Lu, N., Fu, B., Jin, T., Chang, R., 2014. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecol. 29 (10), 1697-1708.

[37]

Luo, Y., , Y., Fu, B., Harris, P., Wu, L., Comber, A., 2018. When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. Natl. Sci. Rev. 6 (2), 349-358.

[38]

, Y., Hu, J., Fu, B., Harris, P., Wu, L., Tong, X., Bai, Y., Comber, A.J., 2018. A framework for the regional critical zone classification: the case of the Chinese Loess Plateau. Natl. Sci. Rev. 6 (1), 14-18.

[39]

Mooney, H.A., Duraiappah, A., Larigauderie, A., 2013. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. U.S.A. 110, 3665-3672.

[40]

Motesharrei, S., Rivas, J., Kalnay, E., Asrar, G.R., Busalacchi, A.J., Cahalan, R.F., Cane, M.A., Colwell, R.R., Feng, K., Franklin, R.S., 2016. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. Natl. Sci. Rev. 3 (4), 470-494.

[41]

Nilsson, M., Chisholm, E., Griggs, D., Howden-Chapman, P., McCollum, D., Messerli, P., Neumann, B., Stevance, A.-S., Visbeck, M., Stafford-Smith, M., 2018. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustainability Sci. 13 (6), 1489-1503.

[42]

Ostrom, E., 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325 (5939), 419-422.

[43]

Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao, E., 2016. Improvements in ecosystem services from investments in natural capital. Science 352 (6292), 1455-1459.

[44]

Palomo, I., Martín-López, B., Potschin, M., Haines-Young, R., Montes, C., 2013. National Parks, buffer zones and surrounding lands: mapping ecosystem service flows. Ecosyst. Serv. 4, 104-116.

[45]

Peng, J., Hu, Y.N., Dong, J.Q., Mao, Q., Liu, Y.X., Du, Y.Y., Wu, J.S., Wang, Y.L., 2020. Linking spatial differentiation with sustainability management: Academic contributions and research directions of physical geography in China. Prog. Phys. Geogr. 44 (1), 14-30.

[46]

Pindyck, R.S., 2017. The use and misuse of models for climate policy. Rev. Environ. Econ. Policy 11 (1), 100-114.

[47]

Qiu, J., 2017. The role of geography in sustainable development. Natl. Sci. Rev. 4 (1), 140-143.

[48]

Reyers, B., Folke, C., Moore, M.-L., Biggs, R., Galaz, V., 2018. Social-ecological systems insights for navigating the dynamics of the Anthropocene. Annu. Rev. Environ. Resour. 43, 267-289.

[49]

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., 2009. A safe operating space for humanity. Nature 461 (7263), 472-475.

[50]

Sandifer, P.A., Sutton-Grier, A.E., Ward, B.P., 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 12, 1-15.

[51]

Schaefer, M., Goldman, E., Bartuska, A.M., Sutton-Grier, A., Lubchenco, J., 2015. Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs. Proc. Natl. Acad. Sci. 112 (24), 7383-7389.

[52]

Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D., Sachs, J.D., 2017. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 10 (8), 547-555.

[53]

Serna-Chavez, H., Schulp, C., Van Bodegom, P., Bouten, W., Verburg, P., Davidson, M., 2014. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 39, 24-33.

[54]

Song, C.Q., Yuan, L.H., Yang, X.F., Fu, B.J., 2017. Ecological-hydrological processes in arid environment: Past, present and future. J. Geog. Sci. 27 (12), 1577-1594.

[55]

Stafford-Smith, M., Griggs, D., Gaffney, O., Ullah, F., Reyers, B., Kanie, N., Stigson, B., Shrivastava, P., Leach, M., O’Connell, D., 2017. Integration: the key to implementing the sustainable development goals. Sustainability Sci. 12 (6), 911-919.

[56]

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A., 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347 (6223), 1259855.

[57]

UN, 2018. The sustainable development goals report 2018. United Nations, New York.

[58]

van der, Hel, S., 2016. New science for global sustainability? The institutionalisation of knowledge co-production in Future Earth. Environ. Sci. Policy 61, 165-175.

[59]

Wang, S., Fu, B., Wei, Y., Lyle, C., 2013. Ecosystem services management: an integrated approach. Curr. Opin. Environ. Sustainability 5, 11-15.

[60]

Wang, S., Fu, B., Zhao, W., Liu, Y., Wei, F., 2018. Structure, function, and dynamic mechanisms of coupled human-natural systems. Curr. Opin. Environ. Sustainability 33, 87-91.

[61]

Warren, S.G., 2015. Can human populations be stabilized? Earth’s Future 3 (2), 82-94.

[62]

Weyant, J., 2017. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11 (1), 115-137.

[63]

Wu, J.G., 2019. Linking landscape, land system and design approaches to achieve sustainability. J. Land Use Sci. 14 (2), 173-189.

[64]

Xu, Z., Chau, S.N., Chen, X., Zhang, J., Li, Y., Dietz, T., Wang, J., Winkler, J.A., Fan, F., Huang, B., Li, S., Wu, S., Herzberger, A., Tang, Y., Hong, D., Li, Y., Liu, J., 2020. Assessing progress towards sustainable development over space and time. Nature 577 (7788), 74-78.

[65]

Yang, W., Liu, W., Viña, A., Tuanmu, M.N., He, G., Dietz, T., Liu, J., 2013. Nonlinear effects of group size on collective action and resource outcomes. Proc. Natl. Acad. Sci. 110 (27), 10916-10921.

[66]

Yu, D., Lu, N., Fu, B., 2017. Establishment of a comprehensive indicator system for the assessment of biodiversity and ecosystem services. Landscape Ecol. 32 (8), 1563-1579.

[67]

Zheng, H., Robinson, B.E., Liang, Y., Polasky, S., Ma, D., Wang, F., Ruckelshaus, M., Ouyang, Z., Daily, G.C., 2013. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl. Acad. Sci. 110 (41), 16681-16686.

PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

/