Cuticular waxes in alpine grassland plants: Chemical diversity, biosynthesis, and ecological adaptation with biotechnological insights

Jiawei Xu , Jinjing Wang , Jiahao Huang , Yushan Tao , Yanjun Guo

Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 269 -280.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 269 -280. DOI: 10.1002/glr2.70021
REVIEW ARTICLE

Cuticular waxes in alpine grassland plants: Chemical diversity, biosynthesis, and ecological adaptation with biotechnological insights

Author information +
History +
PDF

Abstract

Cuticular waxes, complex hydrophobic layers coating alpine grassland plants, are critical for survival in extreme environments characterized by freezing temperatures, intense UV-B radiation, and physiological drought. This review synthesizes advances in understanding the chemical diversity, biosynthesis, and ecological roles of these waxes, emphasizing their adaptive significance. This review reveals that alpine species exhibit remarkable plasticity in wax composition, with alkanes, alcohols, and specialized metabolites (β-diketones, alkylresorcinols) dynamically regulated by altitude-driven stressors. Phylogenetic analyses highlight weak taxonomic signals in wax profiles. This suggests that convergent evolution, rather than shared ancestry, is a dominant driver of chemical traits shaped by similar environmental pressures. Notably, alpine plants like Polygonum viviparum L. and Koeleria cristata Pers. employ lineage-specific strategies—such as polyketide synthase-mediated β-diketone synthesis—to balance stress resilience and ecological function. The challenges in resolving the genetic and environmental influences on wax traits are discussed, along with calls for integrated multiomics approaches to decode the molecular mechanisms underlying adaptation. Beyond ecology, we explore the ethnobotanical relevance of wax-rich species in traditional grazing systems and their potential in biotechnological applications, such as UV-protective cosmetics. By bridging fundamental research with agricultural innovation, this study positions alpine cuticular wax studies as an opportunity for addressing climate resilience and biodiversity conservation.

Keywords

alpine plants / climate change / cuticular waxes / environmental stress

Cite this article

Download citation ▾
Jiawei Xu, Jinjing Wang, Jiahao Huang, Yushan Tao, Yanjun Guo. Cuticular waxes in alpine grassland plants: Chemical diversity, biosynthesis, and ecological adaptation with biotechnological insights. Grassland Research, 2025, 4(3): 269-280 DOI:10.1002/glr2.70021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anthelme, F., Cavieres, L. A., & Dangles, O. (2014). Facilitation among plants in alpine environments in the face of climate change. Frontiers in Plant Science, 5, 387. https://doi.org/10.3389/fpls.2014.00387

[2]

Ballas, J. P., & Matter, S. F. (2020). UV-induced anthocyanin in the host plant Sedum lanceolatum has little effect on feeding by larval Parnassius smintheus. Alpine Botany, 130(1), 25-30. https://doi.org/10.1007/s00035-019-00228-0

[3]

Boanares, D., Bueno, A., de Souza, A. X., Kozovits, A. R., Sousa, H. C., Pimenta, L. P. S., Isaias, R. M. S., & França, M. G. C. (2021). Cuticular wax composition contributes to different strategies of foliar water uptake in six plant species from foggy rupestrian grassland in tropical mountains. Phytochemistry, 190, 112894. https://doi.org/10.1016/J.PHYTOCHEM.2021.112894

[4]

Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117, 161-179. https://doi.org/10.1016/j.gca.2013.04.016

[5]

Chen, K. (2022). Characterization of the metabolic networks and gene-metabolite associations underlying cuticle production in maize via systems' biology approaches (Doctoral dissertation, Iowa State University).

[6]

Choi, H., Ohyama, K., Kim, Y. Y., Jin, J. Y., Lee, S. B., Yamaoka, Y., Muranaka, T., Suh, M. C., Fujioka, S., & Lee, Y. (2014). The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. The Plant Cell, 26(1), 310-324. https://doi.org/10.1105/tpc.113.118935

[7]

Dodd, R. S., & Poveda, M. M. (2003). Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics and Ecology, 31(11), 1257-1270. https://doi.org/10.1016/S0305-1978(03)00031-0

[8]

Fukuda, S., Satoh, A., Kasahara, H., Matsuyama, H., & Takeuchi, Y. (2008). Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. Journal of Plant Research, 121(2), 179-189. https://doi.org/10.1007/s10265-007-0143-7

[9]

Gan, L., Zhu, S., Zhao, Z., Liu, L., Wang, X., Zhang, Z., Zhang, X., Wang, J., Wang, J., Guo, X., & Wan, J. (2017). Wax crystal-sparse leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Plant Cell Reports, 36(10), 1655-1666. https://doi.org/10.1007/s00299-017-2181-5

[10]

Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L., & Jetter, R. (2007). The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology, 145(3), 653-667. https://doi.org/10.1104/PP.107.107300

[11]

Grünhofer, P., Herzig, L., Zhang, Q., Vitt, S., Stöcker, T., Malkowsky, Y., Brügmann, T., Fladung, M., & Schreiber, L. (2024). Changes in wax composition but not amount enhance cuticular transpiration. Plant, Cell & Environment, 47(1), 91-105. https://doi.org/10.1111/pce.14719

[12]

Guo, N., Gao, J., He, Y., & Guo, Y. (2016). Compositae plants differed in leaf cuticular waxes between high and low altitudes. Chemistry & Biodiversity, 13(6), 710-718. https://doi.org/10.1002/cbdv.201500208

[13]

Guo, Y., Busta, L., & Jetter, R. (2017). Cuticular wax coverage and composition differ among organs of Taraxacum officinale. Plant Physiology and Biochemistry, 115, 372-379. https://doi.org/10.1016/j.plaphy.2017.04.004

[14]

Guo, Y., Guo, N., He, Y., & Gao, J. (2015). Cuticular waxes in alpine meadow plants: Climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau. Ecology and Evolution, 5(18), 3954-3968. https://doi.org/10.1002/ece3.1677

[15]

Guo, Y., He, Y., Guo, N., Gao, J., & Ni, Y. (2015). Variations of the composition of the leaf cuticular wax among Chinese populations of Plantago major. Chemistry & Biodiversity, 12(4), 627-636. https://doi.org/10.1002/cbdv.201400216

[16]

Guo, Y., Zhao, X., Li, Y., Li, Z., Xiao, Q., Wang, Y., Zhang, X., & Ni, Y. (2021). Environment-driven adaptations of leaf cuticular waxes are inheritable for Medicago ruthenica. Frontiers in Plant Science, 12, 620245. https://doi.org/10.3389/fpls.2021.620245

[17]

Haliński, Ł. P., Kalkowska, M., Kalkowski, M., Piorunowska, J., Topolewska, A., & Stepnowski, P. (2015). Cuticular wax variation in the tomato (Solanum lycopersicum L.), related wild species and their interspecific hybrids. Biochemical Systematics and Ecology, 60, 215-224. https://doi.org/10.1016/j.bse.2015.04.030

[18]

Haslam, T. M., Mañas-Fernández, A., Zhao, L., & Kunst, L. (2012). Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology, 160(3), 1164-1174. https://doi.org/10.1104/pp.112.201640

[19]

He, Y., Gao, J., Guo, N., & Guo, Y. (2016). Variations of leaf cuticular waxes among C3 and C4 Poaceae herbs. Chemistry & Biodiversity, 13(11), 1460-1468. https://doi.org/10.1002/cbdv.201600030

[20]

Huth, M. A., Huth, A., & Koch, K. (2021). Self-assembly of Eucalyptus gunnii wax tubules and pure ß-diketone on HOPG and glass. Beilstein Journal of Nanotechnology, 12, 939-949. https://doi.org/10.3762/bjnano.12.70

[21]

Inouye, D. W. (2020). Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences, 1469(1), 26-37. https://doi.org/10.1111/nyas.14104

[22]

Iqbal, A., Fahad, S., Iqbal, M., Alamzeb, M., Ahmad, A., Anwar, S., Khan, A. A., Amanullah , Arif, M., Inamullah, S., Saeed, M., & Song, M. (2020). Special adaptive features of plant species in response to drought. In M. Hasanuzzaman & M. Tanveer (Eds.), Salt and Drought Stress Tolerance in Plants: Signaling and Communication in Plants ( 77-118). Springer. https://doi.org/10.1007/978-3-030-40277-8_4

[23]

Jeffree, C. (2006). The fine structure of the plant cuticle. Biology of the Plant Cuticle, 23, 11-144. https://doi.org/10.1002/9781119312994.apr0230

[24]

Joubès, J., Raffaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., Domergue, F., & Lessire, R. (2008). The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 67(5), 547-566. https://doi.org/10.1007/s11103-008-9339-z.

[25]

Jung, K. H., Han, M. J., Lee, D., Lee, Y. S., Schreiber, L., Franke, R., Faust, A., Yephremov, A., Saedler, H., Kim, Y. W., Hwang, I., & An, G. (2006). Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. The Plant Cell, 18(11), 3015-3032. https://doi.org/10.1105/TPC.106.042044

[26]

Kim, S., Im, H., Yu, J., Kim, K., Kim, M., & Lee, T. (2023). Biofuel production from Euglena: Current status and techno-economic perspectives. Bioresource Technology, 371, 128582. https://doi.org/10.1016/j.biortech.2023.128582

[27]

Konecky, B., Dee, S. G., & Noone, D. C. (2019). WaxPSM: A forward model of leaf wax hydrogen isotope ratios to bridge proxy and model estimates of past climate. Journal of Geophysical Research: Biogeosciences, 124(7), 2107-2125. https://doi.org/10.1029/2018jg004708

[28]

Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lü, S., Joubès, J., & Jenks, M. A. (2009). The impact of water deficiency on leaf cuticle lipids of arabidopsis. Plant Physiology, 151(4), 1918-1929. https://doi.org/10.1104/pp.109.141911

[29]

Kunst, L. (2003). Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42(1), 51-80. https://doi.org/10.1016/s0163-7827(02)00045-0

[30]

Kunst, L., & Samuels, L. (2009). Plant cuticles shine: Advances in wax biosynthesis and export. Current Opinion in Plant Biology, 12(6), 721-727. https://doi.org/10.1016/j.pbi.2009.09.009

[31]

Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Jetter, R., & Kunst, L. (2008). Identification of the wax ester synthase/acyl-coenzyme A: Diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiology, 148(1), 97-107. https://doi.org/10.1104/pp.108.123471

[32]

Li, Y., Hou, X., Li, X., Zhao, X., Wu, Z., Xiao, Y., & Guo, Y. (2020). Will the climate of plant origins influence the chemical profiles of cuticular waxes on leaves of Leymus chinensis in a common garden experiment. Ecology and Evolution, 10(1), 543-556. https://doi.org/10.1002/ece3.5930

[33]

Liu, L., Wang, X., & Chang, C. (2022). Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. Frontiers in Plant Science, 13, 961829. https://doi.org/10.3389/fpls.2022.961829

[34]

McAllister, T., Campoli, C., Eskan, M., Liu, L., & McKim, S. M. (2022). A gene encoding a SHINE1/WAX INDUCER1 transcription factor controls cuticular wax in barley. Agronomy, 12(5), 1088. https://doi.org/10.3390/agronomy12051088

[35]

McSteen, P., & Kellogg, E. A. (2022). Molecular, cellular, and developmental foundations of grass diversity. Science, 377, 599-602. https://doi.org/10.1126/science.abo5035

[36]

Ni, Y., Xia, R., & Li, J. (2014). Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiologiae Plantarum, 36(9), 2481-2490. https://doi.org/10.1007/s11738-014-1621-x

[37]

Norström, E., Katrantsiotis, C., Smittenberg, R. H., & Kouli, K. (2017). Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records. Geochimica et Cosmochimica Acta, 219, 96-110. https://doi.org/10.1016/j.gca.2017.09.029

[38]

Pashova, S. (2023). Application of plant waxes in edible coatings. Coatings, 13(5), 911. https://doi.org/10.3390/coatings13050911

[39]

Pasquier, E., Mattos, B. D., Koivula, H., Khakalo, A., Belgacem, M. N., Rojas, O. J., & Bras, J. (2022). Multilayers of renewable nanostructured materials with high oxygen and water vapor barriers for food packaging. ACS Applied Materials & Interfaces, 14, 30236-30245. https://doi.org/10.1021/acsami.2c07579

[40]

Pazyar, N., Yaghoobi, R., Ghassemi, M. R., Kazerouni, A., Rafeie, E., & Jamshydian, N. (2013). Jojoba in dermatology: A succinct review. Giornale italiano di dermatologia e venereologia, 148(6), 687-691. https://europepmc.org/article/MED/24442052

[41]

Pighin, J. A., Zheng, H., Balakshin, L. J., Goodman, I. P., Western, T. L., Jetter, R., Kunst, L., & Samuels, A. L. (2004). Plant cuticular lipid export requires an ABC transporter. Science, 306, 702-704. https://doi.org/10.1126/science.1102331

[42]

Post-Beittenmiller, D. (1996). BIochemistry and molecular biology of wax production in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 405-430. https://doi.org/10.1146/annurev.arplant.47.1.405

[43]

Racovita, R. C., Hen-Avivi, S., Fernandez-Moreno, J. P., Granell, A., Aharoni, A., & Jetter, R. (2016). Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem. Phytochemistry, 130, 182-192. https://doi.org/10.1016/j.phytochem.2016.05.003

[44]

Ramawat, K. G. (2019). An introduction to biodiversity and chemotaxonomy. In K. G. Ramawat (Ed.), Biodiversity and chemotaxonomy (pp. 1-14). Springer International Publishing. https://doi.org/10.1007/978-3-030-30746-2_1

[45]

Riederer, M., & Schreiber, L. (2001). Protecting against water loss: Analysis of the barrier properties of plant cuticles. Journal of Experimental Botany, 52(363), 2023-2032. https://doi.org/10.1093/jexbot/52.363.2023

[46]

Samuels, L., Kunst, L., & Jetter, R. (2008). Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 59, 683-707. https://doi.org/10.1146/annurev.arplant.59.103006.093219

[47]

Serrano, M., Coluccia, F., Torres, M., L'Haridon, F., & Métraux, J. P. (2014). The cuticle and plant defense to pathogens. Frontiers in Plant Science, 5, 274. https://doi.org/10.3389/fpls.2014.00274

[48]

Yang, J., Busta, L., Jetter, R., Sun, Y., Wang, T., Zhang, W., Ni, Y., & Guo, Y. (2023). Diversified chemical profiles of cuticular wax on alpine meadow plants of the Qinghai-Tibet Plateau. Planta, 257(4), 74. https://doi.org/10.1007/s00425-023-04107-1

[49]

Yao, L., Guo, N., He, Y., Xiao, Y., Li, Y., Gao, J., & Guo, Y. (2021). Variations of soil organic matters and plant cuticular waxes along an altitude gradient in Qinghai-Tibet Plateau. Plant and Soil, 458(1-2), 41-58. https://doi.org/10.1007/s11104-019-04304-6

[50]

Yao, L. H., NI, Y., Guo, N., He, Y. J., Gao, J. H., & Guo, Y. J. (2018). Leaf cuticular waxes in Poa pratensis and their responses to altitudes. Acta Prataculturae Sinica, 27(1), 97-105. https://doi.org/10.11686/cyxb2017119

[51]

Yao, L. H., Wang, D. K., Wang, D. J., Li, S. X., Chen, Y. J., & Guo, Y. J. (2022). Phenotypic plasticity and local adaptation of leaf cuticular waxes favor perennial alpine herbs under climate change. Plants, 11(1), 120. https://doi.org/10.3390/plants11010120

[52]

Yeats, T. H., & Rose, J. K. C. (2013). The formation and function of plant cuticles. Plant Physiology, 163(1), 5-20. https://doi.org/10.1104/pp.113.222737

[53]

Yumoto, G., Sasaki-Sekimoto, Y., Aryal, B., Ohta, H., & Kudoh, H. (2021). Altitudinal differentiation in the leaf wax-mediated flowering bud protection against frost in a perennial. Oecologia, 195(3), 677-687. https://doi.org/10.1007/s00442-021-04870-6

[54]

Zeisler-Diehl, V. V., Barthlott, W., & Schreiber, L. (2018). Plant cuticular waxes: Composition, function, and interactions with microorganisms. In H. Wilkes (Ed), Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology. Springer. https://doi.org/10.1007/978-3-319-90569-3_7

[55]

Zhang, X., Kuang, T., Dong, W., Qian, Z., Zhang, H., Landis, J. B., Feng, T., Li, L., Sun, Y., Huang, J., Deng, T., Wang, H., & Sun, H. (2023). Genomic convergence underlying high-altitude adaptation in alpine plants. Journal of Integrative Plant Biology, 65(7), 1620-1635. https://doi.org/10.1111/jipb.13485

[56]

Zheng, G., Tian, B., Zhang, F., Tao, F., & Li, W. (2011). Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels. Plant, Cell & Environment, 34(9), 1431-1442. https://doi.org/10.1111/j.1365-3040.2011.02341.x.

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/