Characterization and application of highly effective rhizobia isolated from Medicago ruthenica in alpine grassland

Mingxu Zhang , Jinpeng Hu , Solomon Boamah , Zhaolong Lü , Yanhua Cao , Mengjiao Chu , Tingyu Duan , Christopher Rensing , Jinlin Zhang

Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 235 -248.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 235 -248. DOI: 10.1002/glr2.70019
RESEARCH ARTICLE

Characterization and application of highly effective rhizobia isolated from Medicago ruthenica in alpine grassland

Author information +
History +
PDF

Abstract

Background: The symbiotic relationship between legume forages and their rhizobia is highly specific, and the effectiveness of rhizobial inoculants is often limited by local soil and climatic conditions. Therefore, identifying rhizobial strains that are well-adapted to specific environments is crucial for improving nitrogen fixation efficiency.

Methods: Four rhizobial strains were isolated from Medicago ruthenica (L.) Trautv and evaluated for their symbiotic performance with the same host plant. The most effective strain was identified based on key physiological parameters following inoculation. Response surface methodology was then applied to optimize the growth medium for the selected strain, GBXD30.

Results: Inoculation with strain GBXD30 increased plant biomass by 12%, enhanced the number of effective nodules by 3.5-fold, and boosted nitrogenase activity by 0.8-fold, compared to the reference strain USDA1844. Optimization of the fermentation medium via response surface analysis further demonstrated the potential of GBXD30 as a highly effective rhizobial inoculant suitable for alpine grassland conditions.

Conclusions: The targeted selection and application of effective rhizobial strains, such as GBXD30, are critical for maximizing nitrogen fixation in alpine legume forages. These findings offer valuable insights for developing rhizobial inoculants tailored to alpine ecosystems.

Keywords

alpine grassland / culture conditions / Medicago ruthenica / nitrogen fixation / rhizobia

Cite this article

Download citation ▾
Mingxu Zhang, Jinpeng Hu, Solomon Boamah, Zhaolong Lü, Yanhua Cao, Mengjiao Chu, Tingyu Duan, Christopher Rensing, Jinlin Zhang. Characterization and application of highly effective rhizobia isolated from Medicago ruthenica in alpine grassland. Grassland Research, 2025, 4(3): 235-248 DOI:10.1002/glr2.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abel, N. B., Nørgaard, M., Hansen, S. B., Gysel, K., Díez, I. A., Jensen, O. N., Stougaard, J., & Andersen, K. R. (2024). Phosphorylation of the alpha-I motif in SYMRK drives root nodule organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 121(8), e2311522121. https://doi.org/10.1073/pnas.2311522121

[2]

Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5(16), 100032. https://doi.org/10.1016/j.resenv.2021.100032

[3]

Alemneh, A. A., Zhou, Y., Ryder, M. H., & Denton, M. D. (2020). Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. Journal of Applied Microbiology, 129(5), 1133-1156. https://doi.org/10.1111/jam.14754

[4]

de Almeida Ribeiro, P. R., dos Santos, J. V., Martins da Costa, E., Lebbe, L., Silva Assis, E., Oliveira Louzada, M., Azarias Guimarães, A., Willems, A., & de Souza Moreira, F. M. (2015). Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agriculture, Ecosystems & Environment, 212, 85-93. https://doi.org/10.1016/j.agee.2015.06.017

[5]

Bai, W. P., Li, H. J., Hepworth, S. R., Liu, H. S., Liu, L. B., Wang, G. N., Ma, Q., Bao, A. K., & Wang, S. M. (2023). Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum. BMC Plant Biology, 23, 7. https://doi.org/10.1186/s12870-022-04024-7

[6]

van Berkum, P., Beyene, D., Bao, G., Campbell, T. A., & Eardly, B. D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. International Journal of Systematic and Evolutionary Microbiology, 1, 13-22. https://doi.org/10.1099/00207713-48-1-13

[7]

Broadbent, A. A. D., Newbold, L. K., Pritchard, W. J., Michas, A., Goodall, T., Cordero, I., Giunta, A., Snell, H. S. K., Pepper, V. V. L. H., Grant, H. K., Soto, D. X., Kaufmann, R., Schloter, M., Griffiths, R. I., Bahn, M., & Bardgett, R. D. (2024). Climate change disrupts the seasonal coupling of plant and soil microbial nutrient cycling in an alpine ecosystem. Global Change Biology, 30(3), e17245. https://doi.org/10.1111/gcb.17245

[8]

Cao, X., Yue, L., Wang, C., Luo, X., Zhang, C., Zhao, X., Wu, F., White, J. C., Wang, Z., & Xing, B. (2022). Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield, and nutritional quality of soybean. ACS Nano, 16(1), 1170-1181. https://doi.org/10.1021/acsnano.1c08977

[9]

Chakraborty, S., Driscoll, H. E., Abrahante, J. E., Zhang, F., Fisher, R. F., & Harris, J. M. (2021). Salt stress enhances early symbiotic gene expression in Medicago truncatula and induces a stress-specific set of rhizobium-responsive genes. Molecular Plant-Microbe Interactions, 34(8), 904-921. https://doi.org/10.1094/MPMI-01-21-0019-R

[10]

Che, R., Wang, Y., Li, K., Xu, Z., Hu, J., Wang, F., Rui, Y., Li, L., Pang, Z., & Cui, X. (2019). Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 195, 104426. https://doi.org/10.1016/j.still.2019.104426

[11]

Dong, S. (2023). Revitalizing the grassland on the Qinghai-Tibetan Plateau. Grassland Research, 2(3), 241-250. https://doi.org/10.1002/glr2.12055

[12]

Fall, F., Le Roux, C., Bâ, A. M., Fall, D., Bakhoum, N., Faye, M. N., Kane, A., Ndoye, I., & Diouf, D. (2019). The rhizosphere of the halophytic grass Sporobolus robustus Kunth hosts rhizobium genospecies that are efficient on Prosopis juliflora (Sw.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. Systematic and Applied Microbiology, 42(2), 232-239. https://doi.org/10.1016/j.syapm.2018.10.006

[13]

Feng, J., Lee, T., Schiessl, K., & Oldroyd, G. E. D. (2021). Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science, 374, 629-632. https://doi.org/10.1126/science.abg2804

[14]

Furey, G. N., & Tilman, D. (2021). Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118. https://doi.org/10.1073/pnas.2111321118

[15]

Gnat, S., Wójcik, M., Wdowiak-Wróbel, S., Kalita, M., Ptaszyńska, A., & Małek, W. (2014). Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene. Antonie Van Leeuwenhoek, 105(6), 1033-1048. https://doi.org/10.1007/s10482-014-0163-y

[16]

Han, F., Li, H., Lyu, E., Zhang, Q., Gai, H., Xu, Y., Bai, X., He, X., Khan, A. Q., Li, X., Xie, F., Li, F., Fang, X., & Wei, M. (2024). Soybean-mediated suppression of BjaI/BjaR(1) quorum sensing in Bradyrhizobium diazoefficiens impacts symbiotic nitrogen fixation. Applied and Environmental Microbiology, 90(2), e0137423. https://doi.org/10.1128/aem.01374-23

[17]

Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W., & Li, X. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. The ISME Journal, 14(8), 1915-1928. https://doi.org/10.1038/s41396-020-0648-9

[18]

Hartmann, M., & Six, J. (2022). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4, 4-18. https://doi.org/10.1038/s43017-022-00366-w

[19]

Hasan, M. M., Corpas, F. J., & Fang, X. W. (2022). Light: A crucial factor for rhizobium-induced root nodulation. Trends in Plant Science, 27(10), 955-957. https://doi.org/10.1016/j.tplants.2022.07.002

[20]

He, A., Niu, S., Yang, D., Ren, W., Zhao, L., Sun, Y., Meng, L., Zhao, Q., Paré, P. W., & Zhang, J. (2021). Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiology and Biochemistry, 161, 74-85. https://doi.org/10.1016/j.plaphy.2021.02.003

[21]

He, A. L., Niu, S. Q., Zhao, Q., Li, Y. S., Gou, J. Y., Gao, H. J., Suo, S. Z., & Zhang, J. L. (2018). Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. International Journal of Molecular Sciences, 19(2), 469. https://doi.org/10.3390/ijms19020469

[22]

Hou, S., Wolinska, K. W., & Hacquard, S. (2021). Microbiota-root-shoot-environment axis and stress tolerance in plants. Current Opinion in Plant Biology, 62, 102028. https://doi.org/10.1016/j.pbi.2021.102028

[23]

Hu, J. P., Zhang, M. X., Lü, Z. L., He, Y. Y., Yang, X. X., Khan, A., Xiong, Y. C., Fang, X. L., Dong, Q. M., & Zhang, J. L. (2023). Grazing practices affect phyllosphere and rhizosphere bacterial communities of Kobresia humilis by altering their network stability. Science of the Total Environment, 900, 165814. https://doi.org/10.1016/j.scitotenv.2023.165814

[24]

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biology and Fertility of Soils, 49, 791-801. https://doi.org/10.1007/s00374-012-0771-5

[25]

Jarzyniak, K., Banasiak, J., Jamruszka, T., Pawela, A., Di Donato, M., Novák, O., Geisler, M., & Jasiński, M. (2021). Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nature Plants, 7, 428-436. https://doi.org/10.1038/s41477-021-00873-6

[26]

Jiang, M., Delgado-Baquerizo, M., Yuan, M. M., Ding, J., Yergeau, E., Zhou, J., Crowther, T. W., & Liang, Y. (2023). Home-based microbial solution to boost crop growth in low-fertility soil. New Phytologist, 239(2), 752-765. https://doi.org/10.1111/nph.18943

[27]

Jiang, Y., Zhang, X., An, L., & Liu, Y. (2024). A novel biochar-augmented enzymatic process for conversion of food waste to biofertilizers: Planting trial with leafy vegetable. Bioresource Technology, 399, 130554. https://doi.org/10.1016/j.biortech.2024.130554

[28]

Jiao, J., Zhang, B., Li, M. L., Zhang, Z., & Tian, C. F. (2022). The zinc-finger bearing xenogeneic silencer MucR in α-proteobacteria balances adaptation and regulatory integrity. The ISME Journal, 16(3), 738-749. https://doi.org/10.1038/s41396-021-01118-2

[29]

Jing, J., Cong, W. F., & Bezemer, T. M. (2022). Legacies at work: Plant-soil-microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 27(8), 781-792. https://doi.org/10.1016/j.tplants.2022.05.007

[30]

Kang, A., Zhang, N., Xun, W., Dong, X., Xiao, M., Liu, Z., Xu, Z., Feng, H., Zou, J., Shen, Q., & Zhang, R. (2022). Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide. Plant Physiology, 188(2), 1129-1140. https://doi.org/10.1093/plphys/kiab555

[31]

Khan, A., Singh, A. V., Kukreti, B., Pandey, D. T., Upadhayay, V. K., Kumar, R., & Goel, R. (2024). Deciphering the impact of cold-adapted bioinoculants on rhizosphere dynamics, biofortification, and yield of kidney bean across varied altitudinal zones. Science of the Total Environment, 927, 172204. https://doi.org/10.1016/j.scitotenv.2024.172204

[32]

Kunert, K. J., Vorster, B. J., Fenta, B. A., Kibido, T., Dionisio, G., & Foyer, C. H. (2016). Drought stress responses in soybean roots and nodules. Frontiers in Plant Science, 7, 1015. https://doi.org/10.3389/fpls.2016.01015

[33]

Li, C., Chen, X., Jia, Z., Zhai, L., Zhang, B., Grüters, U., Ma, S., Qian, J., Liu, X., Zhang, J., & Müller, C. (2024). Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nature Ecology & Evolution, 8, 1270-1284. https://doi.org/10.1038/s41559-024-02437-1

[34]

Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H., & Yang, X. (2020). Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 199, 104577. https://doi.org/10.1016/j.still.2020.104577

[35]

Li, H. P., Gan, Y. N., Yue, L. J., Han, Q. Q., Chen, J., Liu, Q. M., Zhao, Q., & Zhang, J. L. (2022). Newly isolated Paenibacillus monticola sp. nov., a novel plant growth-promoting rhizobacteria strain from high-altitude spruce forests in the Qilian mountains, China. Frontiers in Microbiology, 13, 833313. https://doi.org/10.3389/fmicb.2022.833313

[36]

Li, H. P., Yao, D., Shao, K. Z., Han, Q. Q., Gou, J. Y., Zhao, Q., & Zhang, J. L. (2020). Altererythrobacter rhizovicinus sp. nov., isolated from rhizosphere soil of Haloxylon ammodendron. International Journal of Systematic and Evolutionary Microbiology, 70(1), 680-686. https://doi.org/10.1099/ijsem.0.003817

[37]

Lin, G., Hua, L., Shen, Y., & Zhao, Y. (2023). Change characteristics and influencing factors of grassland degradation in adjacent areas of the Qinghai-Tibet Plateau and suggestions for grassland restoration. PeerJ, 11, e16084. https://doi.org/10.7717/peerj.16084

[38]

Liu, H., Zhang, C., Yang, J., Yu, N., & Wang, E. (2018). Hormone modulation of legume-rhizobial symbiosis. Journal of Integrative Plant Biology, 60(8), 632-648. https://doi.org/10.1111/jipb.12653

[39]

Liu, Y., Zhang, X., Du, X., Du, Z., & Sun, M. (2024). Alpine grassland greening on the Northern Tibetan Plateau driven by climate change and human activities considering extreme temperature and soil moisture. Science of the Total Environment, 916, 169995. https://doi.org/10.1016/j.scitotenv.2024.169995.

[40]

Liu, Y. S., Geng, J. C., Sha, X. Y., Zhao, Y. X., Hu, T. M., & Yang, P. Z. (2019). Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 10, 538. https://doi.org/10.3389/fpls.2019.00538

[41]

Mapelli, F., Mengoni, A., Riva, V., & Borin, S. (2023). Bacterial culturing is crucial to boost sustainable agriculture. Trends in Microbiology, 31(1), 1-4. https://doi.org/10.1016/j.tim.2022.10.005

[42]

Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends in Microbiology, 17(10), 458-466. https://doi.org/10.1016/j.tim.2009.07.004

[43]

Mendis, H. C., Queiroux, C., Brewer, T. E., Davis, O. M., Washburn, B. K., & Jones, K. M. (2013). The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (alfalfa). Molecular Plant-Microbe Interactions, 26(9), 1089-1105. https://doi.org/10.1094/MPMI-03-13-0087-R

[44]

Neelamegam, P., & Muthusubramanian, B. (2024). Evaluating embodied energy, carbon impact, and predictive precision through machine learning for pavers manufactured with treated recycled construction and demolition waste aggregate. Environmental Research, 248, 118296. https://doi.org/10.1016/j.envres.2024.118296

[45]

Qiao, L., Lin, J., Suzaki, T., & Liang, P. (2023). Staying hungry: A roadmap to harnessing central regulators of symbiotic nitrogen fixation under fluctuating nitrogen availability. aBIOTECH, 5, 107-113. https://doi.org/10.1007/s42994-023-00123-7

[46]

Qiao, M., Sun, R., Wang, Z., Dumack, K., Xie, X., Dai, C., Wang, E., Zhou, J., Sun, B., Peng, X., Bonkowski, M., & Chen, Y. (2024). Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications, 15(1), 2924. https://doi.org/10.1038/s41467-024-47979-x

[47]

Rosero-Chasoy, G., Rodríguez-Jasso, R. M., Aguilar, C. N., Buitrón, G., Chairez, I., & Ruiz, H. A. (2021). Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation: An overview. Bioresource Technology, 321, 124458. https://doi.org/10.1016/j.biortech.2020.124458

[48]

Schulte, C. C. M., Borah, K., Wheatley, R. M., Terpolilli, J. J., Saalbach, G., Crang, N., de Groot, D. H., Ratcliffe, R. G., Kruger, N. J., Papachristodoulou, A., & Poole, P. S. (2021). Metabolic control of nitrogen fixation in rhizobium-legume symbioses. Science Advances, 7(31), eabh2433. https://doi.org/10.1126/sciadv.abh2433

[49]

Shi, T. S., Collins, S. L., Yu, K., Peñuelas, J., Sardans, J., Li, H., & Ye, J. S. (2024). A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands. Nature Communications, 15(1), 3411. https://doi.org/10.1038/s41467-024-47829-w

[50]

Song, T., Sun, N., Dong, L., & Cai, H. (2021). Enhanced alkali tolerance of rhizobia-inoculated alfalfa correlates with altered proteins and metabolic processes as well as decreased oxidative damage. Plant Physiology and Biochemistry, 159, 301-311. https://doi.org/10.1016/j.plaphy.2020.12.021

[51]

Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture, 4, 2. https://doi.org/10.1186/s40538-016-0085-1

[52]

Stūrīte, I., Henriksen, T. M., & Breland, T. A. (2005). Distinguishing between metabolically active and inactive roots by combined staining with 2,3,5-triphenyltetrazolium chloride and image colour analysis. Plant and Soil, 271, 75-82. https://doi.org/10.1007/s11104-004-2027-0

[53]

Tena, W., Wolde-Meskel, E., Degefu, T., & Walley, F. (2017). Lentil (Lens culinaris Medik.) nodulates with genotypically and phenotypically diverse rhizobia in Ethiopian soils. Systematic and Applied Microbiology, 40(1), 22-33. https://doi.org/10.1016/j.syapm.2016.11.001

[54]

Torres, A. R., Kaschuk, G., Saridakis, G. P., & Hungria, M. (2012). Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World Journal of Microbiology & Biotechnology, 28(4), 1831-1835. https://doi.org/10.1007/s11274-011-0964-3

[55]

Trivedi, P., Batista, B. D., Bazany, K. E., & Singh, B. K. (2022). Plant-microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytologist, 234(6), 1951-1959. https://doi.org/10.1111/nph.18016

[56]

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621. https://doi.org/10.1038/s41579-020-0412-1

[57]

Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X., & Martínez-Romero, E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 49, 51-65. https://doi.org/10.1099/00207713-49-1-51

[58]

Wang, M., Ge, A. H., Ma, X., Wang, X., Xie, Q., Wang, L., Song, X., Jiang, M., Yang, W., Murray, J. D., Wang, Y., Liu, H., Cao, X., & Wang, E. (2024). Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nature Communications, 15(1), 1668. https://doi.org/10.1038/s41467-024-45925-5

[59]

Wang, T., Ren, L., Li, C., Zhang, D., Zhang, X., Zhou, G., Gao, D., Chen, R., Chen, Y., Wang, Z., Shi, F., Farmer, A. D., Li, Y., Zhou, M., Young, N. D., & Zhang, W. H. (2021). The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 19(1), 96. https://doi.org/10.1186/s12915-021-01033-0

[60]

Wang, X. L., Cui, W. J., Feng, X. Y., Zhong, Z. M., Li, Y., Chen, W. X., Chen, W. F., Shao, X. M., & Tian, C. F. (2018). Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: A strong selection of facultative microsymbionts. Soil Biology and Biochemistry, 116, 340-350. https://doi.org/10.1016/j.soilbio.2017.10.033

[61]

Wang, Z., Zhang, X., Ma, Q., & Shen, Y. (2022). Seed mixture of oats and common vetch on fertilizer and water-use reduction in a semi-arid alpine region. Soil and Tillage Research, 219, 105329. https://doi.org/10.1016/j.still.2022.105329

[62]

Xiao, H., Peng, Z., Xu, C. L., Zhang, D. G., Chai, J. L., Pan, T. T., & Yu, X. J. (2018). Yak and Tibetan sheep trampling inhibit reproductive and photosynthetic traits of Medicago ruthenica var. inschanica. Environmental Monitoring and Assessment, 190, 507. https://doi.org/10.1007/s10661-018-6896-8

[63]

Xu, P., & Wang, E. (2023). Diversity and regulation of symbiotic nitrogen fixation in plants. Current Biology, 33(11), R543-R559. https://doi.org/10.1016/j.cub.2023.04.053

[64]

Xu, Z., Liu, Y., Zhang, N., Xun, W., Feng, H., Miao, Y., Shao, J., Shen, Q., & Zhang, R. (2023). Chemical communication in plant-microbe beneficial interactions: A toolbox for precise management of beneficial microbes. Current Opinion in Microbiology, 72, 102269. https://doi.org/10.1016/j.mib.2023.102269

[65]

Yan, S., & Bisseling, T. (2024). Is it possible to engineer nitrogen fixing nodule symbiosis? Agriculture Communications, 2(1), 100031. https://doi.org/10.1016/j.agrcom.2024.100031

[66]

Yang, P., Zhang, P., Li, B., & Hu, T. (2013). Effect of nodules on dehydration response in alfalfa (Medicago sativa L.). Environmental and Experimental Botany, 86, 29-34. https://doi.org/10.1016/j.envexpbot.2011.05.012

[67]

Yang, S. H., Chen, W. H., Wang, E. T., Chen, W. F., Yan, J., Han, X. Z., Tian, C. F., Sui, X. H., Singh, R. P., Jiang, G. M., & Chen, W. X. (2018). Rhizobial biogeography and inoculation application to soybean in four regions across China. Journal of Applied Microbiology, 125(3), 853-866. https://doi.org/10.1111/jam.13897

[68]

Yin, M., Zhang, S., Du, X., Mateo, R. G., Guo, W., Li, A., Wang, Z., Wu, S., Chen, J., Liu, J., & Ren, G. (2021). Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Molecular Ecology Resources, 21(5), 1641-1657. https://doi.org/10.1111/1755-0998.13363

[69]

Yu, B., Chao, D. Y., & Zhao, Y. (2024). How plants sense and respond to osmotic stress. Journal of Integrative Plant Biology, 66(3), 394-423. https://doi.org/10.1111/jipb.13622

[70]

Zhang, J., Wang, J., Zhu, C., Singh, R. P., & Chen, W. (2024). Chickpea: Its origin, distribution, nutrition, benefits, breeding, and symbiotic relationship with Mesorhizobium species. Plants (Basel), 13(3), 429. https://doi.org/10.3390/plants13030429

[71]

Zhang, K., Rengel, Z., Zhang, F., White, P. J., & Shen, J. (2022). Rhizosphere engineering for sustainable crop production: Entropy-based insights. Trends in Plant Science, 28(4), 390-398. https://doi.org/10.1016/j.tplants.2022.11.008

[72]

Zhang, M. X., Bai, R., Nan, M., Ren, W., Wang, C. M., Shabala, S., & Zhang, J. L. (2022). Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. Journal of Plant Physiology, 273, 153708. https://doi.org/10.1016/j.jplph.2022.153708

[73]

Zhang, M. X., Hu, J. P., Li, J. L., Che, Z., Li, L., Lü, Z. L., Dong, W. Q., Zhang, J. Q., Yao, T., Duan, T. Y., & Zhang, J. L. (2024). Responses of legume-associated rhizobacterial communities to plant diversity and soil traits in alpine grassland. Land Degradation & Development, 36(2), 335-680. https://doi.org/10.1002/ldr.5369

[74]

Zhang, M. X., Zhao, L. Y., He, Y. Y., Hu, J. P., Hu, G. W., Zhu, Y., Khan, A., Xiong, Y. C., & Zhang, J. L. (2024). Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresource Technology, 391, 129987. https://doi.org/10.1016/j.biortech.2023.129987

[75]

Zhang, M. X., Zhao, L. Y., Hu, J. P., Aziz, K., Yang, X. X., Dong, Q. M., Christopher, R., Fang, X. L., & Zhang, J. L. (2023). Different grazers and grazing practices alter the growth, soil properties, and rhizosphere soil bacterial communities of Medicago ruthenica in the Qinghai-Tibetan Plateau grassland. Agriculture, Ecosystems & Environment, 352, 108522. https://doi.org/10.1016/j.agee.2023.108522

[76]

Zhang, X., Chen, J. X., Lian, W. T., Zhou, H. W., He, Y., Li, X. X., & Liao, H. (2024). Molecular module GmPTF1a/b-GmNPLa regulates rhizobia infection and nodule formation in soybean. New Phytologist, 241(4), 1813-1828. https://doi.org/10.1111/nph.19462

[77]

Zhao, G., Zhu, X., Zheng, G., Meng, G., Dong, Z., Baek, J. H., Jeon, C. O., Yao, Y., Xuan, Y. H., Zhang, J., & Jia, B. (2024). Development of biofertilizers for sustainable agriculture over four decades (1980-2022). Geography and Sustainability, 5(1), 19-28. https://doi.org/10.1016/j.geosus.2023.09.006

[78]

Zhao, P., Yu, J., Zhang, X., Ren, Z., Li, M., & Han, S. (2023). Trifolium repens and biochar addition affecting soil nutrients and bacteria community. Environmental Science and Pollution Research, 30, 33927-33941. https://doi.org/10.1007/s11356-022-24651-9

[79]

Zhao, Y., Zhang, R., Jiang, K. W., Qi, J., Hu, Y., Guo, J., Zhu, R., Zhang, T., Egan, A. N., Yi, T. S., Huang, C. H., & Ma, H. (2021). Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 14(5), 748-773. https://doi.org/10.1016/j.molp.2021.02.006

[80]

Zhong, X., Wang, J., Shi, X., Bai, M., Yuan, C., Cai, C., Wang, N., Zhu, X., Kuang, H., Wang, X., Su, J., He, X., Liu, X., Yang, W., Yang, C., Kong, F., Wang, E., & Guan, Y. (2024). Genetically optimizing soybean nodulation improves yield and protein content. Nature Plants, 10, 736-742. https://doi.org/10.1038/s41477-024-01696-x

[81]

Zou, Q., Zhou, Y., Cheng, G., Peng, Y., Luo, S., Wu, H., Yan, C., Li, X., & He, D. (2021). Antioxidant ability of glutaredoxins and their role in symbiotic nitrogen fixation in Rhizobium leguminosarum bv. viciae 3841. Applied and Environmental Microbiology, 87(4), e01956-20. https://doi.org/10.1128/AEM.01956-20

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/