Effects of whole-soil warming on ecosystem carbon fluxes in an alpine grassland

Ying Chen , Mengguang Han , Qi Shen , Wenkuan Qin , Zhenhua Zhang , Jin-Sheng He , Biao Zhu

Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 249 -259.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (3) : 249 -259. DOI: 10.1002/glr2.70017
RESEARCH ARTICLE

Effects of whole-soil warming on ecosystem carbon fluxes in an alpine grassland

Author information +
History +
PDF

Abstract

Background: Global warming impacts ecosystem carbon exchange, thus altering the carbon sink capacity of terrestrial ecosystems. However, the response of ecosystem carbon fluxes to whole-soil-profile warming remains unclear.

Methods: We first investigated the effect of whole-soil warming on ecosystem carbon fluxes in an alpine grassland ecosystem on the Qinghai-Tibet Plateau. We also compiled a database of 48 articles to examine the general patterns of experimental warming effects on these fluxes using a global meta-analysis.

Results: Our results showed that whole-soil warming elevated gross ecosystem productivity (GEP) by 14% and ecosystem respiration (ER) by 11%, but had a minor impact on net ecosystem carbon exchange (NEE) in the alpine grassland. In the meta-analysis, warming also enhanced GEP (10%-11%) and ER (13%), but did not alter NEE. Warming-induced shifts in plant community and extension of growing season may be the main reasons for the higher GEP and ER under warming, and the offset of both fluxes likely caused the minor response of NEE to warming.

Conclusions: More attention should be paid to the long-term response of ecosystem carbon fluxes to whole-soil or whole-ecosystem warming throughout the year. These novel findings may help us better predict and mitigate future climate-carbon feedback under realistic warming scenarios.

Keywords

ecosystem respiration / gross ecosystem productivity / meta-analysis / net ecosystem carbon exchange / whole-soil warming

Cite this article

Download citation ▾
Ying Chen, Mengguang Han, Qi Shen, Wenkuan Qin, Zhenhua Zhang, Jin-Sheng He, Biao Zhu. Effects of whole-soil warming on ecosystem carbon fluxes in an alpine grassland. Grassland Research, 2025, 4(3): 249-259 DOI:10.1002/glr2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calcagno, V., & Mazancourt, C. (2010). glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34, 1-29. https://doi.org/10.18637/jss.v034.i12

[2]

Chapin, F. S., Matson, P. A., Mooney, H. A., & Vitousek, P. M. (2002). Principles of terrestrial ecosystem ecology. Springer.

[3]

Chapin, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A., & Field, C. B. (2008). Changing feedbacks in the climate-biosphere system. Frontiers in Ecology and the Environment, 6, 313-320. https://doi.org/10.1890/080005

[4]

Chen, D. L., Xu, B. Q., Yao, T. D., Guo, Z. T., Cui, P., Chen, F. H., Zhang, R. H., Zhang, X. Z., Zhang, Y. L., Fan, J., Hou, Z. Q., & Zhang, T. H. (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 60, 3025-3035. https://doi.org/10.1360/N972014-01370

[5]

Chen, Y., Feng, J., Yuan, X., & Zhu, B. (2020). Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis. Geoderma, 370, 114363. https://doi.org/10.1016/j.geoderma.2020.114363

[6]

Chen, Y., Han, M., Yuan, X., Cao, G., & Zhu, B. (2021). Seasonal changes in soil properties, microbial biomass and enzyme activities across the soil profile in two alpine ecosystems. Soil Ecology Letters, 3, 383-394. https://doi.org/10.1007/s42832-021-0101-7

[7]

Chen, Y., Han, M. G., Qin, W. K., Hou, Y. H., Zhang, Z. H., & Zhu, B. (2023). Effects of whole-soil warming on CH4 and N2O fluxes in an alpine grassland. Global Change Biology, 30, e17033. https://doi.org/10.1111/gcb.17033

[8]

Chen, Y., Han, M. G., Yuan, X., Zhou, H. K., Zhao, X. Q., Schimel, J. P., & Zhu, B. (2023). Long-term warming reduces surface soil organic carbon by reducing mineral-associated carbon rather than “free” particulate carbon. Soil Biology and Biochemistry, 177, 108905. https://doi.org/10.1016/j.soilbio.2022.108905

[9]

Chen, Y., Qin, W., Zhang, Q., Wang, X., Feng, J., Han, M., Hou, Y., Zhao, H., Zhang, Z., He, J. S., Torn, M. S., & Zhu, B. (2024). Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nature Communications, 15, 4489. https://doi.org/10.1038/s41467-024-48736-w

[10]

Feng, W., Lu, H., Yao, T., & Yu, Q. (2020). Drought characteristics and its elevation dependence in the Qinghai-Tibet plateau during the last half-century. Scientific Reports, 10, 14323. https://doi.org/10.1038/s41598-020-71295-1

[11]

Field, C. B., Lobell, D. B., Peters, H. A., & Chiariello, N. R. (2007). Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources, 32, 1-29. https://doi.org/10.1146/annurev.energy.32.053006.141119

[12]

Fu, G., Shen, Z., Zhang, X., Yu, C., Zhou, Y., Li, Y., & Yang, P. (2013). Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of Tibet. Journal of Mountain Science, 10, 455-463. https://doi.org/10.1007/s11629-013-2360-y

[13]

Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Björck, S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P., Carless, D., Chimner, R. A., Clifford, M., Cressey, E., … Zhao, Y. (2018). Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 8, 907-913. https://doi.org/10.1038/s41558-018-0271-1

[14]

Ganjurjav, H., Hu, G., Wan, Y., Li, Y., Danjiu, L., & Gao, Q. (2018). Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau. Ecology and Evolution, 8, 1507-1520. https://doi.org/10.1002/ece3.3741

[15]

Ganjurjav, H., Hu, G., Zhang, Y., Gornish, E. S., Yu, T., & Gao, Q. (2022). Warming tends to decrease ecosystem carbon and water use efficiency in dissimilar ways in an alpine meadow and a cultivated grassland in the Tibetan Plateau. Agricultural and Forest Meteorology, 323, 109079. https://doi.org/10.1016/j.agrformet.2022.109079

[16]

Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292. https://doi.org/10.1038/nature06591

[17]

Hicks Pries, C. E., Castanha, C., Porras, R. C., & Torn, M. S. (2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423. https://doi.org/10.1126/science.aal1319

[18]

Houghton, R. A. (2007). Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313-347. https://doi.org/10.1146/annurev.earth.35.031306.140057

[19]

Hu, Q., & Feng, S. (2003). A daily soil temperature dataset and soil temperature climatology of the contiguous United States. Journal of Applied Meteorology, 42, 1139-1156. https://doi.org/10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2

[20]

IPCC. (2023). Summary for policymakers In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change (pp. 1-34). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647.00

[21]

Jia, J., Cao, Z., Liu, C., Zhang, Z., Lin, L., Wang, Y., Haghipour, N., Wacker, L., Bao, H., Dittmar, T., Simpson, M. J., Yang, H., Crowther, T. W., Eglinton, T. I., He, J. S., & Feng, X. (2019). Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Global Change Biology, 25, 4383-4393. https://doi.org/10.1111/gcb.14823

[22]

Khodorova, N., & Boitel-Conti, M. (2013). The role of temperature in the growth and flowering of geophytes. Plants, 2, 699-711. https://doi.org/10.3390/plants2040699

[23]

Li, H., Zhang, F., Li, Y., Wang, J., Zhang, L., Zhao, L., Cao, G., Zhao, X., & Du, M. (2016). Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 228-229, 95-103. https://doi.org/10.1029/2020JG006011

[24]

Li, Z. L., Mu, C. C., Chen, X., Wang, X. Y., Dong, W. W., Jia, L., Mu, M., Streletskaya, I., Grebenets, V., Sokratov, S., Kizyakov, A., & Wu, X. D. (2021). Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002-2017. Advances in Climate Change Research, 12, 475-481. https://doi.org/10.1016/j.accre.2021.06.004

[25]

Liang, J., Xia, J., Liu, L., & Wan, S. (2013). Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 6, 437-447. https://doi.org/10.1093/jpe/rtt003

[26]

Liu, H., Lu, C., Wang, S., Ren, F., & Wang, H. (2021). Climate warming extends growing season but not reproductive phase of terrestrial plants. Global Ecology and Biogeography, 30, 950-960. https://doi.org/10.1111/geb.13269

[27]

Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., Wang, H., Liu, L., Zhu, B., Cao, G., Zhao, X., Sanders, N. J., Classen, A. T., Reich, P. B., & He, J. S. (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences United States of America, 115, 4051-4056. https://doi.org/10.1073/pnas.1700299114

[28]

Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., & Li, B. (2013). Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology, 94, 726-738. https://doi.org/10.1890/12-0279.1

[29]

Luo, Y. (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology Evolution and Systematics, 38, 683-712. https://doi.org/10.1146/annurev.ecolsys.38.091206.095808

[30]

Luo, Y., Melillo, J., Niu, S., Beier, C., Clark, J. S., Classen, A. T., Davidson, E., Dukes, J. S., Evans, R. D., Field, C. B., Czimczik, C. I., Keller, M., Kimball, B. A., Kueppers, L. M., Norby, R. J., Pelini, S. L., Pendall, E., Rastetter, E., Six, J., … Torn, M. S. (2011). Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biology, 17, 843-854. https://doi.org/10.1111/j.1365-2486.2010.02265.x

[31]

Lv, W., Luo, C., Zhang, L., Niu, H., Zhang, Z., Wang, S., Wang, Y., Jiang, L., Wang, Y., He, J., Kardol, P., Wang, Q., Li, B., Liu, P., Dorji, T., Zhou, H., Zhao, X., & Zhao, L. (2020). Net neutral carbon responses to warming and grazing in alpine grassland ecosystems. Agricultural and Forest Meteorology, 280, 107792. https://doi.org/10.1016/j.agrformet.2019.107792

[32]

Ma, X., He, P., Zeng, Y., Ma, J., & Wu, X. (2022). A global-drive analysis of ecosystem respiration in the Arctic and Third Pole. Ecological Indicators, 145, 109668. https://doi.org/10.1016/j.ecolind.2022.109668

[33]

Ma, Z., Liu, H., Mi, Z., Zhang, Z., Wang, Y., Xu, W., Jiang, L., & He, J. S. (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. https://doi.org/10.1038/ncomms15378

[34]

Maes, S. L., Dietrich, J., Midolo, G., Schwieger, S., Kummu, M., Vandvik, V., Aerts, R., Althuizen, I. H. J., Biasi, C., Björk, R. G., Böhner, H., Carbognani, M., Chiari, G., Christiansen, C. T., Clemmensen, K. E., Cooper, E. J., Cornelissen, J. H. C., Elberling, B., Faubert, P., … Dorrepaal, E. (2024). Environmental drivers of increased ecosystem respiration in a warming tundra. Nature, 629, 105-113. https://doi.org/10.1038/s41586-024-07274-7

[35]

Martins, C. S. C., Nazaries, L., Delgado-Baquerizo, M., Macdonald, C. A., Anderson, I. C., Hobbie, S. E., Venterea, R. T., Reich, P. B., & Singh, B. K. (2017). Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal-temperate forests. Functional Ecology, 31, 2356-2368. https://doi.org/10.1111/1365-2435.12928

[36]

Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton, A., Zhou, Y. M., & Tang, J. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences United States of America, 108, 9508-9512. https://doi.org/10.1073/pnas.1018189108

[37]

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105. https://doi.org/10.1126/science.aan2874

[38]

Niu, S., Sherry, R. A., Zhou, X., & Luo, Y. (2013). Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie. Ecosystems, 16, 948-961. https://doi.org/10.1007/s10021-013-9661-4

[39]

Nottingham, A. T., Meir, P., Velasquez, E., & Turner, B. L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237. https://doi.org/10.1038/s41586-020-2566-4

[40]

Oberbauer, S. F., Tweedie, C. E., Welker, J. M., Fahnestock, J. T., Henry, G. H. R., Webber, P. J., Hollister, R. D., Walker, M. D., Kuchy, A., Elmore, E., & Starr, G. (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238. https://doi.org/10.1890/06-0649

[41]

Oechel, W. C., Vourlitis, G. L., Hastings, S. J., Zulueta, R. C., Hinzman, L., & Kane, D. (2000). Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981. https://doi.org/10.1038/35023137

[42]

Qin, W., Chen, Y., Wang, X., Zhao, H., Hou, Y., Zhang, Q., Guo, X., Zhang, Z., & Zhu, B. (2023). Whole-soil warming shifts species composition without affecting diversity, biomass and productivity of the plant community in an alpine meadow. Fundamental Research, 3, 160-169. https://doi.org/10.1016/j.fmre.2022.09.025

[43]

Quan, Q., He, N., Zhang, R., Wang, J., Luo, Y., Ma, F., Pan, J., Wang, R., Liu, C., Zhang, J., Wang, Y., Song, B., Li, Z., Zhou, Q., Yu, G., & Niu, S. (2024). Plant height as an indicator for alpine carbon sequestration and ecosystem response to warming. Nature Plants, 10, 890-900. https://doi.org/10.1038/s41477-024-01705-z

[44]

Quan, Q., Tian, D., Luo, Y., Zhang, F., Crowther, T. W., Zhu, K., Chen, H. Y. H., Zhou, Q., & Niu, S. (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5, eaav1131. https://doi.org/10.1126/sciadv.aav1131

[45]

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

[46]

Ravn, N. R., Elberling, B., & Michelsen, A. (2020). Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal. Soil Biology and Biochemistry, 142, 107698. https://doi.org/10.1016/j.soilbio.2019.107698

[47]

Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgomery, R. A. (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263-267. https://doi.org/10.1038/s41586-018-0582-4

[48]

Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., … Wirth, C. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172. https://doi.org/10.1038/35102500

[49]

Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais, P., Hovenden, M. J., Leuzinger, S., Beier, C., Kardol, P., Xia, J., Liu, Q., Ru, J., Zhou, Z., Luo, Y., Guo, D., Adam Langley, J., Zscheischler, J., … Zheng, M. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. https://doi.org/10.1038/s41559-019-0958-3

[50]

Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. I., & Torn, M. S. (2021). Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Science Advances, 7, eabd1343. https://doi.org/10.1126/sciadv.abd1343

[51]

Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D., & Torn, M. S. (2020). CMIP5 models predict rapid and deep soil warming over the 21st century. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005266. https://doi.org/10.1029/2019JG005266

[52]

Sullivan, P. F., Arens, S. J. T., Chimner, R. A., & Welker, J. M. (2008). Temperature and microtopography interact to control carbon cycling in a high Arctic fen. Ecosystems, 11, 61-76. https://doi.org/10.1007/s10021-007-9107-y

[53]

Tang, R., He, B., Chen, H. W., Chen, D., Chen, Y., Fu, Y. H., Yuan, W., Li, B., Li, Z., Guo, L., Hao, X., Sun, L., Liu, H., Sun, C., & Yang, Y. (2022). Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nature Climate Change, 12, 380-385. https://doi.org/10.1038/s41558-022-01304-w

[54]

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353, 72-74. https://doi.org/10.1126/science.aaf4610

[55]

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707. https://doi.org/10.1016/0038-0717(87)90052-6

[56]

Verburg, P. S. J., Arnone, J. A., Obrist, D., Schorran, D. E., Evans, R. D., Leroux-swarthout, D., Johnson, D. W., Luo, Y., & Coleman, J. S. (2004). Net ecosystem carbon exchange in two experimental grassland ecosystems. Global Change Biology, 10, 498-508. https://doi.org/10.1111/j.1529-8817.2003.00744.x

[57]

Wang, Y., Xiao, J., Ma, Y., Ding, J., Chen, X., Ding, Z., & Luo, Y. (2023). Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth's Third Pole. Science Advances, 9, eade6875. https://doi.org/10.1126/sciadv.ade6875

[58]

Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J., & Zhu, B. (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599. https://doi.org/10.1111/j.1365-2486.2008.01591.x

[59]

Ylänne, H., Stark, S., & Tolvanen, A. (2015). Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: Evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Global Change Biology, 21, 3696-3711. https://doi.org/10.1111/gcb.12964

[60]

Yu, G. R., Zhu, X. J., Fu, Y. L., He, H. L., Wang, Q. F., Wen, X. F., Li, X. R., Zhang, L. M., Zhang, L., Su, W., Li, S. G., Sun, X. M., Zhang, Y. P., Zhang, J. H., Yan, J. H., Wang, H. M., Zhou, G. S., Jia, B. R., Xiang, W. H., & Tong, C. L. (2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810. https://doi.org/10.1111/gcb.12079

[61]

Zhou, W., Yang, H., Zhou, L., Chen, Y., Huang, L., & Ju, W. (2018). Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecological indicators, 95, 1-11. https://doi.org/10.1016/j.ecolind.2018.07.008

[62]

Zhu, J. T., Chen, N., Zhang, Y. J., & Liu, Y. J. (2016). Effects of experimental warming on net ecosystem CO2 exchange in Northern Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1219-1229. https://doi.org/10.17521/cjpe.2016.0186

[63]

Zhu, J., Zhang, Y., & Jiang, L. (2017). Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agricultural and Forest Meteorology, 233, 242-249. https://doi.org/10.1016/j.agrformet.2016.12.005

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/