Overview of autotoxicity in alfalfa (Medicago sativa L.): Identifying gaps between laboratory findings and demonstration at field scale

Paige Baisley , Kimberly A. Cassida

Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 151 -160.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 151 -160. DOI: 10.1002/glr2.70012
REVIEW ARTICLE

Overview of autotoxicity in alfalfa (Medicago sativa L.): Identifying gaps between laboratory findings and demonstration at field scale

Author information +
History +
PDF

Abstract

Autotoxicity is a type of intraspecific allelopathy in which compounds released by a plant inhibit the growth of other plants of the same species. In alfalfa (Medicago sativa L.), an herbaceous perennial legume widely used in hay and pasture production, autotoxicity is associated with re-establishment failure, reduced yields, and decreased persistence. Several compounds in the phenolic and saponin groups are suspected to contribute to alfalfa autotoxicity, but the exact compounds, ratio of compounds, and concentration of compounds necessary for autotoxicity are not fully defined. Symptoms of autotoxicity, including decreased germination and inhibited root elongation, are consistently observed in laboratory bioassays, but evidence to consistently implicate autotoxicity in poor alfalfa growth at field scale is lacking. This review article presents three criteria that address the production and accumulation of autotoxic compounds in alfalfa and distinguish symptoms of autotoxicity from other inhibitory factors in the field. These criteria provide a useful framework to highlight both competencies and gaps in our current understanding of alfalfa autotoxicity.

Keywords

alfalfa / allelopathy / autotoxicity

Cite this article

Download citation ▾
Paige Baisley, Kimberly A. Cassida. Overview of autotoxicity in alfalfa (Medicago sativa L.): Identifying gaps between laboratory findings and demonstration at field scale. Grassland Research, 2025, 4(2): 151-160 DOI:10.1002/glr2.70012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdul-Rahman, A. A., & Habib, S. A. (1989). Allelopathic effect of alfalfa (Medicago sativa) on bladygrass (Imperata cylindrica). Journal of Chemical Ecology, 15(9), 2289-2300. https://doi.org/10.1007/BF01012082

[2]

Asbil, W., & Coulman, B. E. (1992). Improving alfalfa stands with early-spring broadcast seeding. Journal of Production Agriculture, 5(1), 57-63. https://doi.org/10.2134/jpa1992.0057

[3]

Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., & Jurzysta, M. (2006). Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytotherapy Research, 20(6), 454-457. https://doi.org/10.1002/ptr.1876

[4]

Baisley, P., & Cassida, K. (2023) Alfalfa autotoxicity: Complex connection between seedling response and alfalfa performance in the field [Conference presentation abstract]. ASA, CSSA, SSSA International Annual Meeting, St. Louis, MO. https://scisoc.confex.com/scisoc/2023am/meetingapp.cgi/Paper/152152

[5]

Baisley, P., Cassida, K., Gruss, S., & Hill, E. (2024). Developing a simple bioassay for detection of alfalfa autotoxicity in field soils. [Conference presentation abstract]. Proceedings of the 25th International Grassland Congress (1989-2023), Covington, KY, United States. 138. https://uknowledge.uky.edu/igc/XXV_IGC_2023/Utilization/138/

[6]

Blum, U., Shafer, S. R., & Lehman, M. E. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18(5), 673-693. https://doi.org/10.1080/07352689991309441

[7]

Blum, U., Worsham, A. D., King, L. D., & Gerig, T. M. (1994). Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in cecil soils. Journal of Chemical Ecology, 20(2), 341-359. https://doi.org/10.1007/BF02064442

[8]

Bohnenblust, K. E. (1983). The effect of allelopathy or autotoxicity on alfalfa seedling establishment. Report of the Twenty-Eighth Alfalfa Improvement Conference, 25.

[9]

Bonanomi, G., Antignani, V., Barile, E., Lanzotti, V., & Scala, F. (2011). Decomposition of Medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases. Journal of Plant Pathology, 93(1), 57-69.

[10]

Cecchi, A. M., Koskinen, W. C., Cheng, H. H., & Haider, K. (2004). Sorption-desorption of phenolic acids as affected by soil properties. Biology and Fertility of Soils, 39(4), 235-242. https://doi.org/10.1007/s00374-003-0710-6

[11]

Chon, S.-U., Choi, S.-K., Jung, S., Jang, H.-G., Pyo, B.-S., & Kim, S.-M. (2002). Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection, 21(10), 1077-1082. https://doi.org/10.1016/S0261-2194(02)00092-3

[12]

Chon, S.-U., Coutts, J. H., & Nelson, C. J. (2000). Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity. Agronomy Journal, 92(4), 715-720. https://doi.org/10.2134/agronj2000.924715x

[13]

Chon, S.-U., & Kim, J.-D. (2002). Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. Journal of Agronomy and Crop Science, 188(4), 281-285. https://doi.org/10.1046/j.1439-037X.2002.00574.x

[14]

Chon, S.-U., & Nelson, C. J. (2001). Effects of experimental procedures and conditions on bioassay sensitivity of alfalfa autotoxicity. Communications in Soil Science and Plant Analysis, 32(9-10), 1607-1619. https://doi.org/10.1081/CSS-100104216

[15]

Chon, S.-U., Nelson, C. J., & Coutts, J. H. (2003). Physiological assessment and path coefficient analysis to improve evaluation of alfalfa autotoxicity. Journal of Chemical Ecology, 29, 2413-2424. https://doi.org/10.1023/A:1026345515162

[16]

Chon, S.-U., Nelson, C. J., & Coutts, J. H. (2004). Osmotic and autotoxic effects of leaf extracts on germination and seedling growth of alfalfa. Agronomy Journal, 96(6), 1673-1679. https://doi.org/10.2134/agronj2004.1673

[17]

Chung, I.-M., & Miller, D. A. (1995a). Allelopathic influence of nine forage grass extracts on germination and seedling growth of alfalfa. Agronomy Journal, 87(4), 767-772. https://doi.org/10.2134/agronj1995.00021962008700040026x

[18]

Chung, I.-M., & Miller, D. A. (1995b). Differences in autotoxicity among seven alfalfa cultivars. Agronomy Journal, 87(3), 596-600. https://doi.org/10.2134/agronj1995.00021962008700030034x

[19]

Chung, I.-M., & Miller, D. A. (1995c). Effect of alfalfa plant and soil extracts on germination and growth of alfalfa. Agronomy Journal, 87(4), 762-767. https://doi.org/10.2134/agronj1995.00021962008700040025x

[20]

Chung, I.-M., Seigler, D., Miller, D. A., & Kyung, S.-H. (2000). Autotoxic compounds from fresh alfalfa leaf extracts: Identification and biological activity. Journal of Chemical Ecology, 26(1), 315-327. https://doi.org/10.1023/A:1005466200919

[21]

Culman, S., Fulford, A., Camberato, J., & Steinke, K. (2020). Tri-State fertilizer recommendations (Bulletin 974). College of Food, Agricultural, and Environmental Sciences. The Ohio State University.

[22]

Czarnota, M. A., Paul, R. N., Dayan, F. E., Nimbal, C. I., & Weston, L. A. (2001). Mode of action, localization of production, chemical nature, and activity of sorgoleone: A potent PSII inhibitor in Sorghum spp. root exudates. Weed Technology, 15(4), 813-825. https://doi.org/10.1614/0890-037X(2001)015[0813:MOALOP]2.0.CO;2

[23]

Dornbos, D. L., Spencer, G. F., & Miller, R. W. (1990). Medicarpin delays alfalfa seed germination and seedling growth. Crop Science, 30(1), 162-166. https://doi.org/10.2135/cropsci1990.0011183X003000010035x

[24]

Eltun, R., Wakefield, R. C., & Sullivan, W. M. (1985). Effect of spray/planting intervals and various grass sods on no-till establishment of alfalfa. Agronomy Journal, 77(1), 5-8. https://doi.org/10.2134/agronj1985.00021962007700010002x

[25]

Garcia, K., & Ané, J.-M. (2017). Polymorphic responses of Medicago truncatula accessions to potassium deprivation. Plant Signaling & Behavior, 12(4), 1307494. https://doi.org/10.1080/15592324.2017.1307494

[26]

Ghimire, B. K., Ghimire, B., Yu, C. Y., & Chung, I.-M. (2019). Allelopathic and autotoxic effects of Medicago sativa—derived allelochemicals. Plants, 8(7), 233. https://doi.org/10.3390/plants8070233

[27]

González Del Portillo, D., Arroyo, B., & Morales, M. B. (2022). The adequacy of alfalfa crops as an agri-environmental scheme: A review of agronomic benefits and effects on biodiversity. Journal for Nature Conservation, 69, 126253. https://doi.org/10.1016/j.jnc.2022.126253

[28]

Goplen, B. P., & Webster, G. R. (1969). Selection in Medicago sativa for tolerance to alfalfa-sick soils of central Alberta. Agronomy Journal, 61(4), 589-590. https://doi.org/10.2134/agronj1969.00021962006100040033x

[29]

Guenzi, W. D., Kehr, W. R., & McCalla, T. M. (1964). Water-soluble phytotoxic substances in alfalfa forage: Variation with variety, cutting, year, and stage of growth. Agronomy Journal, 56(5), 499-500. https://doi.org/10.2134/agronj1964.00021962005600050016x

[30]

Hall, M. H., & Henderlong, P. R. (1989). Alfalfa autotoxic fraction characterization and initial separation. Crop Science, 29(2), 425-428. https://doi.org/10.2135/cropsci1989.0011183X002900020038x

[31]

Hedge, R. S., & Miller, D. A. (1990). Allelopathy and autotoxicity in alfalfa: Characterization and effects of preceding crops and residue incorporation. Crop Science, 30(6), 1255-1259. https://doi.org/10.2135/cropsci1990.0011183X003000060020x

[32]

Hegde, R. S., & Miller, D. A. (1992). Scanning electron microscopy for studying root morphology and anatomy in alfalfa autotoxicity. Agronomy Journal, 84(4), 618-621. https://doi.org/10.2134/agronj1992.00021962008400040016x

[33]

Huang, L.-F., Song, L.-X., Xia, X.-J., Mao, W.-H., Shi, K., Zhou, Y.-H., & Yu, J.-Q. (2013). Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. Journal of Chemical Ecology, 39(2), 232-242. https://doi.org/10.1007/s10886-013-0244-9

[34]

Jennings, J. A., & Nelson, C. J. (1998). Influence of soil texture on alfalfa autotoxicity. Agronomy Journal, 90(1), 54-58. https://doi.org/10.2134/agronj1998.00021962009000010010x

[35]

Jennings, J. A., & Nelson, C. J. (2002a). Rotation interval and pesticide effects on establishment of alfalfa after alfalfa. Agronomy Journal, 94(4), 786-791. https://doi.org/10.2134/agronj2002.7860

[36]

Jennings, J. A., & Nelson, C. J. (2002b). Zone of autotoxic influence around established alfalfa plants. Agronomy Journal, 94(5), 1104-1111. https://doi.org/10.2134/agronj2002.1104

[37]

Jensen, E. H., & Hartman, B. J. (1982). Evidence of auto-toxicity in alfalfa. North American Alfalfa Improvement Conference. https://www.naaic.org/pdf/Alfalfa/867.pdf

[38]

Jensen, E. H., Meyers, K. D., Jones, C. L., & Leedy, C. D. (1984). Effect of alfalfa foliage and alfalfa soil extracts on alfalfa seedling vigor. North American Alfalfa Improvement Conference. https://www.naaic.org/pdf/Alfalfa/803.pdf

[39]

Jones, D. L., & Darrah, P. R. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 166(2), 247-257. https://doi.org/10.1007/BF00008338

[40]

Kehr, W. R., Watkins, J. E., & Ogden, R. L. (1983). Alfalfa establishment and production with continuous alfalfa and following soybeans. Agronomy Journal, 75(3), 435-438. https://doi.org/10.2134/agronj1983.00021962007500030004x

[41]

Kessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory the emerging molecular analysis. Annual Review of Plant Biology, 53(1), 299-328. https://doi.org/10.1146/annurev.arplant.53.100301.135207

[42]

Klein, R. R., & Miller, D. A. (1980). Allelopathy and its role in agriculture. Communications in Soil Science and Plant Analysis, 11(1), 43-56. https://doi.org/10.1080/00103628009367014

[43]

Lattanzio, V. (2019). Relationship of phenolic metabolism to growth in plant and cell cultures under stress. In K. G. Ramawat, H. M. Ekiert, & S. Goyal (Eds.), Plant Cell and Tissue Differentiation and Secondary Metabolites (pp. 1-32). Springer International Publishing. https://doi.org/10.1007/978-3-030-11253-0_8-1

[44]

Lau, J. A., Puliafico, K. P., Kopshever, J. A., Steltzer, H., Jarvis, E. P., Schwarzländer, M., Strauss, S. Y., & Hufbauer, R. A. (2008). Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytologist, 178(2), 412-423. https://doi.org/10.1111/j.1469-8137.2007.02360.x

[45]

Lauriault, L. M., & Darapuneni, M. K. (2021). Alfalfa rotation strategy and soil type influence soil characteristics and replanted alfalfa yield in the irrigated semiarid, subtropical southwestern USA. Crops, 1(3), 141-152. https://doi.org/10.3390/crops1030014

[46]

Li, X., Ding, C., Hua, K., Zhang, T., Zhang, Y., Zhao, L., Yang, Y., Liu, J., & Wang, X. (2014). Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology and Biochemistry, 78, 149-159. https://doi.org/10.1016/j.soilbio.2014.07.019

[47]

Li, Z., Hu, J., Wu, Y., Wang, J., Song, H., Chai, M., Cong, L., Miao, F., Ma, L., Tang, W., Yang, C., Tao, Q., Zhong, S., Zhao, Y., Liu, H., Yang, G., Wang, Z., & Sun, J. (2022). Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa. Plant Physiology and Biochemistry, 170, 49-63. https://doi.org/10.1016/j.plaphy.2021.11.039

[48]

Masaoka, Y., Kojima, M., Sugihara, S., Yoshihara, T., Koshino, M., & Ichihara, A. (1993). Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Plant and Soil, 155-156, 75-78. https://doi.org/10.1007/BF00024987

[49]

McElgunn, J. D., & Heinrichs, D. H. (1970). Effects of root temperature and a suspected phytotoxic substance on the growth of alfalfa. Canadian Journal of Plant Science, 50, 307-311. https://doi.org/10.4141/cjps70-056

[50]

Miller, D. A. (1983). Allelopathic effects of alfalfa. Journal of Chemical Ecology, 9(8), 1059-1072. https://doi.org/10.1007/BF00982211

[51]

Miller, D. A. (1996). Allelopathy in forage crop systems. Agronomy Journal, 88(6), 854-859. https://doi.org/10.2134/agronj1996.00021962003600060003x

[52]

Miller, R. W., Kleiman, R., Powell, R. G., & Putnam, A. R. (1988). Germination and growth inhibitors of alfalfa. Journal of Natural Products, 51(2), 328-330. https://doi.org/10.1021/np50056a025

[53]

Mueller-Warrant, G. W. (1981). No-tillage renovation of alfalfa stands. University of New Hampshire.

[54]

Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F. A., & Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In M. I. R. Khan, P. S. Reddy, A. Ferrante, & N. A. Khan (Eds.), Plant Signaling Molecules (pp. 157-168). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

[55]

Nakahisa, K., Tsuzuki, E., & Mitsumizo, T. (1993). Study on the allelopathy of alfalfa (Medicago sativa L.) I. Observation of allelopathy and survey for substances inducing growth inhibition. Japanese Journal of Crop Science, 62(2), 294-299. https://doi.org/10.1626/jcs.62.294

[56]

Nakahisa, K., Tsuzuki, E., Terao, H., & Kosemura, S. (1994). Study on the allelopathy of alfalfa (Medicago sativa L.) II. Isolation and identification of allelopathic substances in alfalfa. Japanese Journal of Crop Science, 63(2), 278-284. https://doi.org/10.1626/jcs.63.278

[57]

Nielsen, K. F., Woods, W. B., & Cuddy, T. F. (1960). The influence of the extract of some crops and soil residues on germination and growth. Canadian Journal of Plant Science, 40(1), 188-197. https://doi.org/10.4141/cjps60-024

[58]

Oleszek, W. (1996). Alfalfa saponins: structure, biological activity, and chemotaxonomy. In G. R. Waller & K. Yamasaki (Eds.), Saponins Used in Food and Agriculture ( 405, pp. 155-170). Springer US. https://doi.org/10.1007/978-1-4613-0413-5_13

[59]

Oleszek, W., & Jurzysta, M. (1987). The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments. Plant and Soil, 98(1), 67-80. https://doi.org/10.1007/BF02381728

[60]

Oleszek, W., Jurzysta, M., & Górski, P. M. (1992). Alfalfa saponins—The allelopathic agents. In S. J. H. Rizvi & V. Rizvi (Eds.), Allelopathy (pp. 151-167). Springer Netherlands. https://doi.org/10.1007/978-94-011-2376-1_11

[61]

Palavan-Unsal, N., Kefeli, V., & Blum, W. (Eds.). (2012). Phenolic cycle in plants and environment. Mechanisms of Landscape Rehabilitation and Sustainability (pp. 75-78).

[62]

Peoples, M. B., Herridge, D. F., & Ladha, J. K. (1995). Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant and Soil, 174, 3-28. https://doi.org/10.1007/BF00032239

[63]

Pereira, B. F., Sbrissia, A. F., & Serrat, B. M. (2008). Alelopatia intra-específica de extratos aquosos de folhas e raízes de alfafa Na germinação e No crescimento inicial de plântulas de dois materiais de alfafa: Crioulo e melhorado. Ciência Rural, 38(2), 561-564. https://doi.org/10.1590/S0103-84782008000200046

[64]

Pumphrey, F. V., & Moore, D. P. (1973). “Sick” Alfalfa (Vol. 644, pp. 1-7). Oregon State University.

[65]

Read, J. J., & Jensen, E. H. (1989). Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species. Journal of Chemical Ecology, 15(2), 619-628. https://doi.org/10.1007/BF01014705

[66]

Rice, E. L. (1984). Allelopathy—An Overview, Allelopathy ( 2nd ed.). Academic Press.

[67]

Rodriguez-Celma, J., Lin, W.-D., Fu, G.-M., Abadia, J., Lopez-Millan, A.-F., & Schmidt, W. (2013). Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiology, 162(3), 1473-1485. https://doi.org/10.1104/pp.113.220426

[68]

Sampietro, D. A., Sgariglia, M. A., & Soberon, J. R. (2006). Alfalfa soil sickness and autotoxicity. Allelopathy Journal, 18(1), 81-92. https://www.allelopathyjournal.com/

[69]

Sardans, J., Lambers, H., Preece, C., Alrefaei, A. F., & Penuelas, J. (2023). Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? The Plant Journal, 114, 1227-1242. tpj.16184 https://doi.org/10.1111/tpj.16184

[70]

Seguin, P., Sheaffer, C. C., Schmitt, M. A., Russelle, M. P., Randall, G. W., Peterson, P. R., Hoverstad, T. R., Quiring, S. R., & Swanson, D. R. (2002). Alfalfa autotoxicity: Effects of reseeding delay, original stand age, and cultivar. Agronomy Journal, 94(4), 775-781. https://doi.org/10.2134/agronj2002.7750

[71]

Singh, H. P., Batish, D. R., & Kohli, R. K. (1999). Autotoxicity: Concept, organisms, and ecological significance. Critical Reviews in Plant Sciences, 18(6), 757-772. https://doi.org/10.1080/07352689991309478

[72]

Smith, D. G., McInnes, A. G., Higgins, V. J., & Millar, R. L. (1971). Nature of the phytoalexin produced by alfalfa in response to fungal infection. Physiological Plant Pathology, 1(1), 41-44. https://doi.org/10.1016/0048-4059(71)90038-5

[73]

Tanha, A., Golzardi, F., & Mostafavi, K. (2017). Seed priming to overcome autotoxicity of alfalfa (Medicago sativa). World Journal of Environmental Biosciences, 6, 1-5. https://environmentaljournals.org/

[74]

Tesar, M. B. (1993). Delayed seeding of alfalfa avoids autotoxicity after plowing or glyphosate treatment of established stands. Agronomy Journal, 85(2), 256-263. https://doi.org/10.2134/agronj1993.00021962008500020018x

[75]

Tharayil, N., Bhowmik, P., Alpert, P., Walker, E., Amarasiriwardena, D., & Xing, B. (2009). Dual purpose secondary compounds: Phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytologist, 181(2), 424-434. https://doi.org/10.1111/j.1469-8137.2008.02647.x

[76]

Thyr, B. D., Hartman, B. J., & Hunt, O. J. (1983). Effects of methyl bromide and systemic fungicide metalaxyl on alfalfa stand establishment, persistence, yield and disease incidence, Report of the Twenty-Eighth (Vol. 27). Alfalfa Improvement Conference.

[77]

Undersander, D. J. (2015). Alfalfa management guide. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

[78]

United States Department of Agriculture. (2024, April 29). National Agricultural Statistics Service. https://quickstats.nass.usda.gov/results/46BB2D18-5D0C-38FC-BD6F-006109E1DADE

[79]

Vincenot, C. E., Cartenì, F., Bonanomi, G., Mazzoleni, S., & Giannino, F. (2017). Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales. Oikos, 126(9), 1319-1328. https://doi.org/10.1111/oik.04149

[80]

Wang, C., Liu, Z., Wang, Z., Pang, W., Zhang, L., Wen, Z., Zhao, Y., Sun, J., Wang, Z.-Y., & Yang, C. (2022). Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Frontiers in Plant Science, 13, 908426. https://doi.org/10.3389/fpls.2022.908426

[81]

Wang, R. L., Liu, J., Jiang, W., Ji, P., & Li, Y. (2022). Metabolomics and microbiomics reveal impacts of rhizosphere metabolites on alfalfa continuous cropping. Frontiers in Microbiology, 13, 833968. https://doi.org/10.3389/fmicb.2022.833968

[82]

Wang, R. L., Liu, S. W., Xin, X.W., Chen, S., Peng, G. X., Su, Y. J., & Song, Z. K. (2017). Phenolic acids contents and allelopathic potential of 10-cultivars of alfalfa and their bioactivity. Allelopathy Journal, 40(1), 63-70. https://doi.org/10.26651/2017-40-1-1066

[83]

Wardle, D. A., Zackrisson, O., & Nilsson, M.-C. (1998). The charcoal effect in Boreal forests: Mechanisms and ecological consequences. Oecologia, 115(3), 419-426. https://doi.org/10.1007/s004420050536

[84]

Webster, G. R., Khan, S. U., & Moore, A. W. (1967). Poor growth of alfalfa (Medicago sativa) on some Alberta soils. Agronomy Journal, 59(1), 37-41. https://doi.org/10.2134/agronj1967.00021962005900010011x

[85]

Weidenhamer, J. D., Cipollini, D., Morris, K., Gurusinghe, S., & Weston, L. A. (2023). Ecological realism and rigor in the study of plant-plant allelopathic interactions. Plant and Soil, 489, 1-39. https://doi.org/10.1007/s11104-023-06022-6

[86]

Weston, L. A., & Mathesius, U. (2013). Flavonoids: Their structure, biosynthesis and role In the rhizosphere, including allelopathy. Journal of Chemical Ecology, 39(2), 283-297. https://doi.org/10.1007/s10886-013-0248-5

[87]

Williams, A., Langridge, H., Straathof, A. L., Fox, G., Muhammadali, H., Hollywood, K. A., Xu, Y., Goodacre, R., & de Vries, F. T. (2021). Comparing root exudate collection techniques: An improved hybrid method. Soil Biology and Biochemistry, 161, 108391. https://doi.org/10.1016/j.soilbio.2021.108391

[88]

Wing, J. E. (1909). Alfalfa farming in America. Sanders Publishing Company.

[89]

Wu, B., Shi, S., Zhang, H., Du, Y., & Jing, F. (2023). Study on the key autotoxic substances of alfalfa and their effects. Plants, 12(18), 3263. https://doi.org/10.3390/plants12183263

[90]

Wyman-Simpson, C. L., Waller, G. R., Jurzysta, M., McPherson, J. K., & Young, C. C. (1991). Biological activity and chemical isolation of root saponins of six cultivars of alfalfa (Medicago sativa L.). Plant and Soil, 135(1), 83-94. https://doi.org/10.1007/BF00014781

[91]

Xuan, T. D., & Tsuzuki, E. (2002). Varietal differences in allelopathic potential of alfalfa. Journal of Agronomy and Crop Science, 188(1), 2-7. https://doi.org/10.1046/j.1439-037x.2002.00515.x

[92]

Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I.-M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191(3), 162-171. https://doi.org/10.1111/j.1439-037X.2005.00170.x

[93]

Xuan, T. D., Tsuzuki, E., Terao, H., Matsuo, M., & Khanh, T. D. (2003). Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.). Plant Production Science, 6(3), 165-171. https://doi.org/10.1626/pps.6.165

[94]

Zhang, X.-Y., Shi, S.-L., Li, X.-L., Li, C.-N., Zhang, C.-M., A, Y., Kang, W.-J., & Yin, G.-L. (2021). Effects of autotoxicity on alfalfa (Medicago sativa): Seed germination, oxidative damage and lipid peroxidation of seedlings. Agronomy, 11(6), 1027. https://doi.org/10.3390/agronomy11061027

[95]

Zhang, Z., Yan, L., Wang, Y., Ruan, R., Xiong, P., & Peng, X. (2022). Bio-tillage improves soil physical properties and maize growth in a compacted Vertisol by cover crops. Soil Science Society of America Journal, 86(2), 324-337. https://doi.org/10.1002/saj2.20368

[96]

Zhang, Z., Chen, Q., Tan, Y., Shuang, S., Dai, R., Jiang, X., & Temuer, B. (2021). Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes, 12(12), 1967. https://doi.org/10.3390/genes12121967

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/