Fructan biosynthesis gene expression upon cold acclimation in orchardgrass (Dactylis glomerata L.)

B. Shaun Bushman , Joseph G. Robins , Xinxin Zhao , Guangyan Feng , Xinquan Zhang , Linkai Huang , Matthew D. Robbins

Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 121 -130.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 121 -130. DOI: 10.1002/glr2.70011
RESEARCH ARTICLE

Fructan biosynthesis gene expression upon cold acclimation in orchardgrass (Dactylis glomerata L.)

Author information +
History +
PDF

Abstract

Background: Fructan content and flux in temperate forages can benefit the grasses through increased cold hardiness, increased drought tolerance, and improved forage quality. Orchardgrass (Dactylis glomerata L., or cocksfoot) produces relatively long and unbranched levan-type fructans, but the genes involved in their biosynthesis are uncharacterized.

Methods: Through the evaluation of five orchardgrass cultivars and breeding lines that differ in their cold hardiness and freezing tolerance, we tested fructan and monosaccharide accumulation upon cold acclimation. The glycoside hydrolase-32 (GH32) gene family members involved in fructan biosynthesis were identified and grouped with homologous genes from Triticum aestivum and Lolium perenne.

Results: In each of four GH32 gene families, there were specific genes with high transcript levels and no deletions in GH32 motifs. The candidate for sucrose:fructan 6-fructosyltransferase (6-SFT) exhibited the highest transcript levels of any GH32 gene in this study and was induced upon cold acclimation. Conversely, three invertase and two fructan exohydrolase genes, with roles in sucrose and fructan hydrolysis, had reduced transcript levels upon cold acclimation.

Conclusions: These data provide putative roles of GH32 genes in orchardgrass, and show that 6-SFT, vacuolar invertase (VI), and fructan exohydrolases (FEH) genes play a role in fructan biosynthesis and metabolism for cold acclimation in orchardgrass.

Keywords

freezing tolerance / fructosyltransferase / glycoside hydrolase / RNAseq / water soluble carbohydrate

Cite this article

Download citation ▾
B. Shaun Bushman, Joseph G. Robins, Xinxin Zhao, Guangyan Feng, Xinquan Zhang, Linkai Huang, Matthew D. Robbins. Fructan biosynthesis gene expression upon cold acclimation in orchardgrass (Dactylis glomerata L.). Grassland Research, 2025, 4(2): 121-130 DOI:10.1002/glr2.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

[2]

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170

[3]

Bushman, B. S., Larson, S. R., Tuna, M., West, M. S., Hernandez, A. G., Vullaganti, D., Gong, G., Robins, J. G., Jensen, K. B., & Thimmapuram, J. (2011). Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability. Theoretical and Applied Genetics, 123(1), 119-129. https://doi.org/10.1007/s00122-011-1571-2

[4]

Chalmers, J., Johnson, X., Lidgett, A., & Spangenberg, G. (2003). Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). Journal of Plant Physiology, 160(11), 1385-1391. https://doi.org/10.1078/0176-1617-01107

[5]

Chatterton, N. J., Harrison, P. A., Thornley, W. R., & Bennett, J. H. (1993). Structures of fructan oligomers In orchardgrass (Dactylis glomerata L.). Journal of Plant Physiology, 142(5), 552-556. https://doi.org/10.1016/S0176-1617(11)80397-4

[6]

Chen, Y., Kölliker, R., Mascher, M., Copetti, D., Himmelbach, A., Stein, N., & Studer, B. (2024). An improved chromosome-level genome assembly of perennial ryegrass (Lolium perenne L.). GigaByte, 2024, 1-11. https://doi.org/10.46471/gigabyte.112

[7]

De Coninck, B., Le Roy, K., Francis, I., Clerens, S., Vergauwen, R., Halliday, A. M., Smith, S. M., Van Laere, A., & Van Den Ende, W. I. M. (2005). Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant, Cell & Environment, 28(4), 432-443. https://doi.org/10.1111/j.1365-3040.2004.01281.x

[8]

Francki, M. G., Walker, E., Forster, J. W., Spangenberg, G., & Appels, R. (2006). Fructosyltransferase and invertase genes evolved by gene duplication and rearrangements: Rice, perennial ryegrass, and wheat gene families. Genome, 49(9), 1081-1091. https://doi.org/10.1139/g06-066

[9]

Gallagher, J., Turner, L., & Cairns, A. (2007). Recent Advances in Fructoologosaccharides. Research Signpost.

[10]

Hendry, G. A. F. (1993). Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123(1), 3-14. https://doi.org/10.1111/j.1469-8137.1993.tb04525.x

[11]

Hisano, H., Kanazawa, A., Kawakami, A., Yoshida, M., Shimamoto, Y., & Yamada, T. (2004). Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Science, 167(4), 861-868. https://doi.org/10.1016/j.plantsci.2004.05.037

[12]

Hisano, H., Kanazawa, A., Yoshida, M., Humphreys, M. O., Iizuka, M., Kitamura, K., & Yamada, T. (2008). Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. New Phytologist, 178(4), 766-780. https://doi.org/10.1111/j.1469-8137.2008.02409.x

[13]

Huang, L., Feng, G., Yan, H., Zhang, Z., Bushman, B. S., Wang, J., Bombarely, A., Li, M., Yang, Z., Nie, G., Xie, W., Xu, L., Chen, P., Zhao, X., Jiang, W., & Zhang, X. (2019). Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnology Journal, 18, pbi.13205. https://doi.org/10.1111/pbi.13205

[14]

Huynh, B. L., Mather, D. E., Schreiber, A. W., Toubia, J., Baumann, U., Shoaei, Z., Stein, N., Ariyadasa, R., Stangoulis, J. C. R., Edwards, J., Shirley, N., Langridge, P., & Fleury, D. (2012). Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Molecular Biology, 80(3), 299-314. https://doi.org/10.1007/s11103-012-9949-3

[15]

Kawakami, A., & Yoshida, M. (2002). Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Bioscience, Biotechnology, and Biochemistry, 66(11), 2297-2305. https://doi.org/10.1271/bbb.66.2297

[16]

Kawakami, A., & Yoshida, M. (2005). Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta, 223(1), 90-104. https://doi.org/10.1007/s00425-005-0054-6

[17]

Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907-915. https://doi.org/10.1038/s41587-019-0201-4

[18]

Lammens, W., Le Roy, K., Schroeven, L., Van Laere, A., Rabijns, A., & Van den Ende, W. (2009). Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications. Journal of Experimental Botany, 60(3), 727-740. https://doi.org/10.1093/jxb/ern333

[19]

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559

[20]

Lasseur, B., Lothier, J., Wiemken, A., Van Laere, A., Morvan-Bertrand, A., Ende, W. V., & Prud'homme, M. P. (2011). Towards a better understanding of the generation of fructan structure diversity in plants: Molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). Journal of Experimental Botany, 62(6), 1871-1885. https://doi.org/10.1093/jxb/erq388

[21]

Lasseur, B., Schroeven, L., Lammens, W., Le Roy, K., Spangenberg, G., Manduzio, H., Vergauwen, R., Lothier, J., Prud'homme, M.-P., & Van den Ende, W. (2009). Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase. Plant Physiology, 149(1), 327-339. https://doi.org/10.1104/pp.108.125559

[22]

Le Roy, K., Lammens, W., Verhaest, M., De Coninck, B., Rabijns, A., Van Laere, A., & Van den Ende, W. (2007). Unraveling the difference between invertases and fructan exohydrolases: A single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiology, 145(3), 616-625. https://doi.org/10.1104/pp.107.105049

[23]

Li, C., Rudi, H., Stockinger, E. J., Cheng, H., Cao, M., Fox, S. E., Mockler, T. C., Westereng, B., Fjellheim, S., Rognli, O. A., & Sandve, S. R. (2012). Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biology, 12, 65. https://doi.org/10.1186/1471-2229-12-65

[24]

Livingston, D. P., Hincha, D. K., & Heyer, A. G. (2009). Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences, 66(13), 2007-2023. https://doi.org/10.1007/s00018-009-0002-x

[25]

Lothier, J., Lasseur, B., Le Roy, K., Van Laere, A., Prud'homme, M.-P., Barre, P., Van den Ende, W., & Morvan-Bertrand, A. (2007). Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. Journal of Experimental Botany, 58(8), 1969-1983. https://doi.org/10.1093/jxb/erm053

[26]

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8

[27]

Maleux, K., & Van den Ende, W. (2007). Levans in excised leaves ofdactylis glomerata: Effects of light, sugars, temperature and senescence. Journal of Plant Biology, 50(6), 671-680. https://doi.org/10.1007/BF03030612

[28]

Marx, S. P., Josef, N., & Frehner, M. (1997). Hydrolysis of fructan in grasses: A β-(2-6)-linkage specific fructan-β-fructosidase from stubble of Lolium perenne. New Phytologist, 135(2), 279-290. https://doi.org/10.1046/j.1469-8137.1997.00642.x

[29]

Pavis, N., Chatterton, N. J., Harrison, P. A., Baumgartner, S., Praznik, W., Boucaud, J., & Prud'homme, M. P. (2001). Structure of fructans in roots and leaf tissues of Lolium perenne. New Phytologist, 150(1), 83-95. https://doi.org/10.1046/j.1469-8137.2001.00069.x

[30]

Pollock, C. J. (1986). Tansley review no. 5 fructans and the metabolism of sucrose in vascular plants. New Phytologist, 104(1), 1-24. https://doi.org/10.1111/j.1469-8137.1986.tb00629.x

[31]

Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E., & Zanini, F. (2022). Analysing high-throughput sequencing data in python with HTSeq. 2.0. Bioinformatics, 38(10), 2943-2945. https://doi.org/10.1093/bioinformatics/btac166

[32]

Ritsema, T., Hernández, L., Verhaar, A., Altenbach, D., Boller, T., Wiemken, A., & Smeekens, S. (2006). Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. The Plant Journal, 48(2), 228-237. https://doi.org/10.1111/j.1365-313X.2006.02862.x

[33]

Ritsema, T., Verhaar, A., Vijn, I., & Smeekens, S. (2005). Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan:fructan 6g-fructosyltransferase (6G-FFT) In product formation. Plant Molecular Biology, 58(5), 597-607. https://doi.org/10.1007/s11103-005-6504-5

[34]

Robins, J. G., Jensen, K. B., & Bushman, B. S. (2018). Registration of USDA-UTWH-102 Winter-Hardy orchardgrass germplasm. Journal of Plant Registrations, 12(2), 251-252. https://doi.org/10.3198/jpr2017.05.0027crg

[35]

Rumball, W., Miller, J. E., & Claydon, R. B. (1997). ‘Grasslands Tekapo' cocksfoot (Dactylis glomerata L.). New Zealand Journal of Agricultural Research, 40(3), 365-367. https://doi.org/10.1080/00288233.1997.9513256

[36]

Sanada, Y., Tamura, K., & Yamada, T. (2010). Relationship between water-soluble carbohydrates in fall and spring and vigor of spring regrowth in orchardgrass. Crop Science, 50(1), 380-390. https://doi.org/10.2135/cropsci2009.01.0031

[37]

Schroeven, L., Lammens, W., Van Laere, A., & Van den Ende, W. (2008). Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New Phytologist, 180(4), 822-831. https://doi.org/10.1111/j.1469-8137.2008.02603.x

[38]

Skinner, D. Z., & Garland-Campbell, K. (2014). Measuring freezing tolerance: Survival and regrowth assays. Methods in Molecular Biology, 1166, 7-13. https://doi.org/10.1007/978-1-4939-0844-8_2

[39]

Tamura, K., Kawakami, A., Sanada, Y., Tase, K., Komatsu, T., & Yoshida, M. (2009). Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). Journal of Experimental Botany, 60(3), 893-905. https://doi.org/10.1093/jxb/ern337

[40]

Van Den Ende, W., Clerens, S., Vergauwen, R., Van Riet, L., Van Laere, A., Yoshida, M., & Kawakami, A. (2003). Fructan 1-Exohydrolases. β-(2,1)-Trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-Exohydrolase isoforms. Plant Physiology, 131(2), 621-631. https://doi.org/10.1104/pp.015305

[41]

Van den Ende, W., Yoshida, M., Clerens, S., Vergauwen, R., & Kawakami, A. (2005). Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum). New Phytologist, 166(3), 917-932. https://doi.org/10.1111/j.1469-8137.2005.01394.x

[42]

Van Riet, L., Altenbach, D., Vergauwen, R., Clerens, S., Kawakami, A., Yoshida, M., Van den Ende, W., Wiemken, A., & Van Laere, A. (2008). Purification, cloning and functional differences of a third fructan 1-exohydrolase (1-FEHw3) from wheat (Triticum aestivum). Physiologia Plantarum, 133(2), 242-253. https://doi.org/10.1111/j.1399-3054.2008.01070.x

[43]

Van Riet, L., Nagaraj, V., Van den Ende, W., Clerens, S., Wiemken, A., & Van Laere, A. (2006). Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.). Journal of Experimental Botany, 57(1), 213-223. https://doi.org/10.1093/jxb/erj031

[44]

Valluru, R., & Van den Ende, W. (2008). Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany, 59(11), 2905-2916. https://doi.org/10.1093/jxb/ern164

[45]

Venables, W. N. R., & Ripley, B. D. (2002). Modern applied statistics with S ( 4 ed.). Springer. https://www.stats.ox.ac.uk/pub/MASS4/

[46]

Vijn, I., & Smeekens, S. (1999). Fructan: More than a reserve carbohydrate? Plant Physiology, 120(2), 351-360. https://doi.org/10.1104/pp.120.2.351

[47]

Winter, H., & Huber, S. C. (2000). Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 253-289. https://doi.org/10.1080/10409230008984165

[48]

Yoshida, M. (2021). Fructan structure and metabolism in overwintering plants. Plants, 10(5), 933. https://doi.org/10.3390/plants10050933

[49]

Yoshida, M., Abe, J., Moriyama, M., & Kuwabara, T. (1998). Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiologia Plantarum, 103(1), 8-16. https://doi.org/10.1034/j.1399-3054.1998.1030102.x

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/