PDF
Abstract
Background: To optimize animal production systems for future sustainability, research now focuses on improving feed quality to enhance livestock performance. Here, we test the impact on goat metabolism of varying leaf proportions in the alfalfa component of an alfalfa-maize diet.
Methods: In a pen-feeding experiment, 16 three-month-old goats were divided into eight groups, four of which were fed a ration containing 40% alfalfa with leaves intact (LI) and four of which were fed an otherwise identical diet containing stemmy alfalfa (leaves removed, LR).
Results: As expected, LR reduced protein intake compared to LI (48.3 vs. 93.3 g d−1; p < 0.001) and increased acid detergent fiber intake (239 vs. 167 g d−1; p < 0.001), but neutral detergent fiber and dry matter digestibility did not differ between LR and LI. The LR group had lower gross energy, digestible energy, and metabolizable energy intakes than the LI group (p = 0.080, 0.030, and 0.022, respectively). Retained nitrogen for LI and LR was 2.30 and 1.72 g d−1, respectively. Body weight gain was 74 g d−1 in LI and 52 g d−1 in LR (p < 0.001).
Conclusions: These results highlight that even where alfalfa is only one component of a mixed diet, the nutritive quality and leaf content of the alfalfa component are important to animal performance.
Keywords
digestibility of feed components
/
energy balance
/
feed intake
/
nitrogen retention
/
parasite incidence
/
winter goat nutrition
Cite this article
Download citation ▾
Yuhong Jiang, Jieyan Zhou, Xianjiang Chen, Ying Kang, Tianhai Yan, Fujiang Hou.
Effect of alfalfa hay quality in an alfalfa-maize diet on the digestion, metabolism, and growth rate of goats in the Longdong Loess Plateau.
Grassland Research, 2025, 4(2): 140-150 DOI:10.1002/glr2.70009
| [1] |
Ahmad, A. A., Yang, C., Zhang, J., Kalwar, Q., Liang, Z., Li, C., Du, M., Yan, P., Long, R., Han, J., & Ding, X. (2020). Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Frontiers in Microbiology, 11, 625. https://doi.org/10.3389/fmicb.2020.00625
|
| [2] |
Ali, G., Wang, Z. K., Li, X. R., Jin, N. X., Chu, H. Y., & Jin, L. J. (2021). Deep soil water deficit and recovery in alfalfa fields of the Loess Plateau of China. Field Crops Research, 260(1), 107996. https://doi.org/10.1016/j.fcr.2020.107990
|
| [3] |
Angelidis, A., Crompton, L., Misselbrook, T., Yan, T., Reynolds, C. K., & Stergiadis, S. (2019). Evaluation and prediction of nitrogen use efficiency and outputs in faeces and urine in beef cattle. Agriculture, Ecosystems & Environment, 280, 1-15. https://doi.org/10.1016/j.agee.2019.04.013
|
| [4] |
AOAC. (1990). Official methods of analysis ( 15th ed.).
|
| [5] |
AOAC International. (2000). Official methods of analysis ( 17th ed.).
|
| [6] |
Askar, A. R., Salama, R., El-Shaer, H. M., & Raef, O. (2021). Effects of supplementary feeding level on digestion and energy utilization by sheep and goats grazing arid-area rangelands. Animal Feed Science and Technology, 271, 114695. https://doi.org/10.1016/j.anifeedsci.2020.114695
|
| [7] |
Balasubramanian, B., Park, J. H., Shanmugam, S., & Kim, I. H. (2020). Influences of enzyme blend supplementation on growth performance, nutrient digestibility, fecal microbiota and meat-quality in grower-finisher pigs. Animals, 10(3), 386. https://doi.org/10.3390/ani10030386
|
| [8] |
Bank, World & FAO, & NRI. (2011). Missing food: The case of post-harvest grain losses in sub-Saharan Africa. Economic Sector Work Report No. 60371-AFR. http://hdl.handle.net/10986/2824
|
| [9] |
Bhatti, M. A., Godfrey, S. S., Ip, R. H. L., Kachiwala, C., Hovdhaugen, H., Banda, L. J., Limuwa, M., Wynn, P. C., Ådnøy, T., & Eik, L. O. (2021). Diversity of sources of income for smallholder farming communities in Malawi: Importance for improved livelihood. Sustainability, 13(17), 9599. https://doi.org/10.3390/su13179599
|
| [10] |
Bo, P. T., Dong, Y., Zhang, R., Soe Htet, M. N., & Hai, J. (2022). Optimization of alfalfa-based mixed cropping with winter wheat and ryegrass in terms of forage yield and quality traits. Plants, 11(13), 1752. https://doi.org/10.3390/plants11131752
|
| [11] |
Chegere, M. J., Lokina, R., & Mwakaje, A. G. (2020). The impact of hermetic storage bag supply and training on food security in Tanzania. Food Security, 12, 1299-1316. https://doi.org/10.1007/s12571-020-01052-9
|
| [12] |
Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Gersz, A., Moustakas, K., Iwaniuk, J., Grzędzicki, M., & Korczyński, M. (2021). Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. Journal of Environmental Management, 291, 112693. https://doi.org/10.1016/j.jenvman.2021.112693
|
| [13] |
Cui, Y., Liu, H., Gao, Z., Xu, J., Liu, B., Guo, M., Yang, X., Niu, J., Zhu, X., Ma, S., Li, D., Sun, Y., & Shi, Y. (2022). Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Applied Microbiology and Biotechnology, 106(11), 4187-4198. https://doi.org/10.1007/s00253-022-11956-5
|
| [14] |
Du, Z., Sun, L., Lin, Y., Chen, C., Yang, F., & Cai, Y. (2022). Use of Napier grass and rice straw hay as exogenous additive improves microbial community and fermentation quality of paper mulberry silage. Animal Feed Science and Technology, 285, 115219. https://doi.org/10.1016/j.anifeedsci.2022.115219
|
| [15] |
Durango, S. G., Barahona, R., Bolívar, D., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312
|
| [16] |
Eva, T., Jansson, A., & Ringmark, S. (2019). Parasites in horses kept in a 2.5 year-round grazing system in Nordic conditions without supplementary feeding. Animals, 9(12), 1566. https://doi.org/10.3390/ani9121156
|
| [17] |
Glatter, M., Bochnia, M., Wensch-Dorendorf, M., Greef, J. M., & Zeyner, A. (2021). Feed intake parameters of horses fed soaked or steamed hay and hygienic quality of hay stored following treatment. Animals, 11(9), 2729. https://doi.org/10.3390/ani11092729
|
| [18] |
Guinguina, A., Ahvenjärvi, S., Prestløkken, E., Lund, P., & Huhtanen, P. (2019). Predicting feed intake and feed efficiency in lactating dairy cows using digesta marker techniques. Animal, 13(10), 2277-2288. https://doi.org/10.1017/S1751731119000247
|
| [19] |
Haghiyan, I., Mofidi-Chelan, M., Azadi, H., Nejatiyanpour, E., Motamedi, J., Sheidai-Karkaj, E., & Scheffran, J. (2022). Evaluating economic and ecological management to determine the economic size of pastoral units for different climatic zones in the northeast of Iran. Journal of Environmental Management, 301, 113766. https://doi.org/10.1016/j.jenvman.2021.113766
|
| [20] |
Hailemariam, S. E., Tezera, B. T., & Engidashet, D. H. (2022). Husbandry practices and constraints of smallholder dairy production in Dilla Zuriya district, Gedeo Zone, Ethiopia. Heliyon, 8(3), e09151. https://doi.org/10.1016/j.heliyon.2022.e09151
|
| [21] |
Hou, F. J., Nan, Z. B., Xie, Y. Z., Li, X. L., Lin, H. L., & Ren, J. Z. (2008). Integrated crop-livestock production systems in China. The Rangeland Journal, 30(2), 221-231. https://doi.org/10.1071/RJ08018
|
| [22] |
Kemp, D. R., Behrendt, K., Badgery, W. B., Han, G. D., Li, P., Zhang, Y., Wu, J., & Hou, F. J. (2020). Chinese degraded grasslands—Pathways for sustainability. The Rangeland Journal, 42(5), 339-346. https://doi.org/10.1071/rj20033
|
| [23] |
Khanal, P., Dhakal, R., Khanal, T., Pandey, D., Devkota, N. R., & Nielsen, M. O. (2022). Sustainable livestock production in Nepal: A focus on animal nutrition strategies. Agriculture, 12(5), 679. https://doi.org/10.3390/agriculture12050679
|
| [24] |
Lage, C. F. A., Räisänen, S. E., Stefenoni, H., Melgar, A., Chen, X., Oh, J., Fetter, M. E., Kniffen, D. M., Fabin, R. A., & Hristov, A. N. (2021). Lactational performance, enteric gas emissions, and plasma amino acid profile of dairy cows fed diets with soybean or canola meals included on an equal protein basis. Journal of Dairy Science, 104(3), 3052-3066. https://doi.org/10.3168/jds.2020-18851
|
| [25] |
Li, S., Sun, Z., Tan, M., Guo, L., & Zhang, X. (2018). Changing patterns in farming-pastoral ecotones in China between 1990 and 2010. Ecological Indicators, 89, 110-117. https://doi.org/10.1016/j.ecolind.2018.01.067
|
| [26] |
Luo, Y., Huang, D., Miao, H., Wu, L., & Zhu, J. (2022). Impact of advanced storage facilities on households' maize storage losses and food security in China. Environment, Development and Sustainability, 24(1), 221-237. https://doi.org/10.1007/s10668-021-01406-z
|
| [27] |
Luthuli, C. F. (2018). Performance of Nguni goats supplemented with sweet potato vines. University of Zululand.
|
| [28] |
Ma, T., Chen, D. D., Tu, Y., Zhang, N. F., Si, B. W., Deng, K. D., & Diao, Q. Y. (2015). Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. Journal of Animal Physiology and Animal Nutrition, 99(4), 676-683. https://doi.org/10.1111/jpn.12264
|
| [29] |
Machebe, N. S., Ikeh, N. E., Uzochukwu, I. E., & Baiyeri, P. K. (2023). Livestock—Crop interaction for sustainability of agriculture and environment. In M. Farooq, N. Gogoi, & M. Pisante (Eds.), Sustainable Agriculture and the Environment (pp. 339-394). Academic Press. https://doi.org/10.1016/B978-0-323-90500-8.00011-7
|
| [30] |
Manzoor, A., Maqbool, I., Ganaie, Z. A., Afzal, I., Khan, H. M., & Zaffe, B. (2019). Mitigating winter vagaries in dairy animals: A review. International Journal of Veterinary Sciences and Animal Husbandry, 4(1), 1-5. https://www.researchgate.net/publication/331224607
|
| [31] |
Mertens, D. R., & Grant, R. J. (2020). Digestibility and intake. In K. J. Moore, M. Collins, C. J. Nelson, & D. D. Redfearn (Eds.), Forages: The Science of Grassland Agriculture ( 7th ed., pp. 609-631). https://doi.org/10.1002/9781119436669.ch34
|
| [32] |
Moyo, B., & Ravhuhali, K. E. (2023). Dry season feeding strategies and winter forage production by communal area sheep farmers of the Eastern Cape province in South Africa. Cogent Food & Agriculture, 9, 18. https://doi.org/10.1080/23311932.2022.2161775
|
| [33] |
Peachey, L. E., Castro, C., Molena, R. A., Jenkins, T. P., Griffin, J. L., & Cantacessi, C. (2019). Dysbiosis associated with acute helminth infections in herbivorous youngstock-observations and implications. Scientific Reports, 9, 11121. https://doi.org/10.1038/s41598-019-47204-6
|
| [34] |
Peña-Espinoza, M., Em, D., Shahi-Barogh, B., Berer, D., Duscher, G. G., van der Vloedt, L., Glawischnig, W., Rehbein, S., Harl, J., Unterköfler, M. S., & Fuehrer, H. P. (2023). Molecular pathogen screening of louse flies (Diptera: Hippoboscidae) from domestic and wild ruminants in Austria. Parasites & Vectors, 16, 179. https://doi.org/10.1186/s13071-023-05810-4
|
| [35] |
Pettersson, E., Sjölund, M., Dórea, F. C., Lind, E. O., Grandi, G., Jacobson, M., Höglund, J., & Wallgren, P. (2021). Gastrointestinal parasites in Swedish pigs: Prevalence and associated risk factors for infection in herds where animal welfare standards are improved. Veterinary Parasitology, 295, 109459. https://doi.org/10.1016/j.vetpar.2021.109459
|
| [36] |
Piñeiro-Vázquez, A. T., Jiménez-Ferrer, G. O., Chay-Canul, A. J., Casanova-Lugo, F., Díaz-Echeverría, V. F., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2017). Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Animal Feed Science and Technology, 228, 194-201. https://doi.org/10.1016/j.anifeedsci.2017.04.009
|
| [37] |
Rouquette, F. M. (2016). Invited review: The roles of forage management, forage quality, and forage allowance in grazing research. The Professional Animal Scientist, 32(1), 10-18. https://doi.org/10.15232/pas.2015-01408
|
| [38] |
Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55. https://doi.org/10.1016/j.anifeedsci.2019.02.006
|
| [39] |
Sibomana, M. S., Workneh, T. S., & Audain, K. (2016). A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Security, 8(2), 389-404. https://doi.org/10.1007/s12571-016-0562-1
|
| [40] |
Silva, A., Sant'Ana, A., Nascimento, S., Barbosa, S. N., & Menezes, D. R. (2021). Tannins in the diet for lactating goats from different genetic groups in the Brazilian semiarid: Nitrogen, energy and water balance. Animal Feed Science and Technology, 279, 115023. https://doi.org/10.1016/j.anifeedsci.2021.115023
|
| [41] |
Silva, L. F. P., Dixon, R. M., & Costa, D. F. A. (2019). Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Animal Production Science, 59(11), 2093-2107. https://doi.org/10.1071/AN19234
|
| [42] |
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
|
| [43] |
Thomas, S. P. (2024). Evaluation of rotational bale grazing as an alternative winter hay-feeding system for beef cows. [Doctoral dissertation, Virginia Polytechnic Institute and State University]. Virginia Tech. https://vtechworks.lib.vt.edu/items/f0a51f40-d012-4c69-9a82-1589a67e7b63/full.
|
| [44] |
Tsheole, M. S. (2019). Effects of supplementary diet protein on growth performance and reproductive health of Tswana goats. [Doctoral dissertation, North-West University (South Africa)]. North-West University (South Africa). https://repository.nwu.ac.za/handle/10394/35509?show=full.
|
| [45] |
Uddin, M. E., Santana, O. I., Weigel, K. A., & Wattiaux, M. A. (2020). Enteric methane, lactation performances, digestibility, and metabolism of nitrogen and energy of Holsteins and Jerseys fed 2 levels of forage fiber from alfalfa silage or corn silage. Journal of Dairy Science, 103(7), 6087-6099. https://doi.org/10.3168/jds.2019-17599
|
| [46] |
Wang, J., Yang, B. Y., Zhang, S. J., Amar, A., Chaudhry, A. S., Cheng, L., Abbasi, I. H. R., Al-Mamun, M., Guo, X. F., & Shan, A. S. (2021). Using mixed silages of sweet sorghum and alfalfa in total mixed rations to improve growth performance, nutrient digestibility, carcass traits and meat quality of sheep. Animal, 15(7), 100246. https://doi.org/10.1016/j.animal.2021.100246
|
| [47] |
Wu, Y. D., Sun, L., Chen, Z., Hou, A., Crusiol, L., Yu, L., Chen, R., & Sun, Z. (2022). The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of Northern China. Science of the Total Environment, 805, 150286. https://doi.org/10.1016/j.scitotenv.2021.150286
|
| [48] |
Wuthijaree, K., Tatsapong, P., & Lambertz, C. (2022). The prevalence of intestinal parasite infections in goats from smallholder farms in Northern Thailand. Helminthologia, 59(1), 64-73. https://doi.org/10.2478/helm-2022-0007
|
| [49] |
Zhang, G. N., Li, Y., Zhao, C., Fang, X. P., & Zhang, Y. G. (2021). Effect of substituting wet corn gluten feed and corn stover for alfalfa hay in total mixed ration silage on lactation performance in dairy cows. Animal, 15(3), 100013. https://doi.org/10.1016/j.animal.2020.100013
|
| [50] |
Zhu, W., Xu, W., Wei, C., Zhang, Z., Jiang, C., & Chen, X. (2020). Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids (Capra. hircus). Animals, 10(1), 151. https://doi.org/10.3390/ani10010151
|
RIGHTS & PERMISSIONS
2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.