The impact of seasonal variability of rainfall and drought on vegetation and livestock population in Central District, eastern Botswana

Lydia. O. Frank , P. Parth Sarthi

Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 93 -104.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 93 -104. DOI: 10.1002/glr2.70008
RESEARCH ARTICLE

The impact of seasonal variability of rainfall and drought on vegetation and livestock population in Central District, eastern Botswana

Author information +
History +
PDF

Abstract

Background: This research aimed to elucidate the components of rainfall variation, their influence on the natural vegetation growing season and consequent impacts on the livestock population.

Methods: This study evaluates the influence of rainfall metrics and drought on vegetation and livestock in Central District, Botswana. It uses Pearson correlation analysis to assess the relationships between rainfall metrics, drought, vegetation and livestock. Trends were analysed using Mann-Kendal and Sen's slope analysis.

Results: It was found that rainfall variability and drought frequently occur in Central District, with continuing effects on vegetation and livestock. From 1990 to 2020, the district experienced moderate droughts on cycles of approximately alternating years. Severe drought occurred in 2003, and 2000 was a wet year. No significant trend was observed in rainfall metrics. The normalised difference vegetation index (NDVI), and the number of cattle and goats significantly declined. Annual NDVI shows a significant relationship with the number of rainy days, drought and consecutive wet days; cattle numbers are negatively correlated with consecutive dry days. Seasonal results show that NDVI is highly correlated to the number of rainy days in April-June (AMJ) and October-December, and NDVI is correlated to the standardised precipitation evapotranspiration index (SPEI) during AMJ and July-September.

Conclusions: The study findings revealed a seasonal and annual relationship between rainfall metrics, SPEI 12, livestock (goats, sheep and cattle population) and NDVI in the Central District of Botswana.

Keywords

drought / livestock / Mann-Kendall test / normalised difference vegetation index (NDVI) / rainfall metrics / vegetation

Cite this article

Download citation ▾
Lydia. O. Frank, P. Parth Sarthi. The impact of seasonal variability of rainfall and drought on vegetation and livestock population in Central District, eastern Botswana. Grassland Research, 2025, 4(2): 93-104 DOI:10.1002/glr2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akinyemi, F. O. (2017). Climate change and variability in semiarid Palapye, Eastern Botswana. An assessment from smallholder framers’ perspective. Weather Climate, 9(3), 349-365. https://doi.org/10.1175/WCAS-D-16-0040.1

[2]

Akinyemi, F. O. (2021). Vegetation trends, drought severity and land use-land cover change during the growing season in semi-arid contexts. Remote Sensing, 13(5), 836. https://doi.org/10.3390/rs13050836

[3]

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite remote sensing of grasslands: From observation to management-A review. http://jpe.oxfordjournals.org/

[4]

Angel, S. P., Amitha, J. P., Rashamol, V. P., Vandana, G. D., & Savitha, S. T. (2018). Climate change and cattle production: Impact and adaptation. Journal of Veterinary Medicine and Research, 5(4), 1134. https://doi.org/10.47739/2378-931X/1134

[5]

Ayanlade, A., Jeje, O. D., Nwaezeigwe, J. O., Orimoogunje, O. O. I., & Olokeogun, O. S. (2021). Rainfall seasonality effects on vegetation greenness in different ecological zones. Environmental Challenges, 4, 100144. https://doi.org/10.1016/j.envc.2021.100144

[6]

Azzali, S., & Menenti, M. (2000). Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. International Journal of Remote Sensing, 21(5), 973-996. https://doi.org/10.1080/014311600210380

[7]

Bai, Y., Deng, X., Zhang, Y., Wang, C., & Liu, Y. (2019). Does climate adaptation of vulnerable households to extreme events benefit livestock production? Journal of Cleaner Production, 210, 358-365. https://doi.org/10.1016/j.jclepro.2018.10.250

[8]

Belina Negeri, M. (2017). The effects of El Nino on agricultural GDP of Ethiopia. American Journal of Water Science and Engineering, 3(4), 45-49. https://doi.org/10.11648/j.ajwse.20170304.11

[9]

Byakatonda, J., Parida, B. P., Moalafhi, D. B., & Kenabatho, P. K. (2018). Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 213, 492-508. https://doi.org/10.1016/j.atmosres.2018.07.002

[10]

Byakatonda, J., Parida, B. P., Moalafhi, D. B., Kenabatho, P. K., & Lesolle, D. (2020). Investigating relationship between drought severity in Botswana and ENSO. Natural Hazards, 100, 255-278. https://doi.org/10.1007/s11069-019-03810-1

[11]

Chen, Z., Wang, W., & Fu, J. (2020). Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Scientific Reports, 10, 830. https://doi.org/10.1038/s41598-020-57910-1

[12]

Chuai, X. W., Huang, X. J., Wang, W. J., & Bao, G. (2013). NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China. International Journal of Climatology, 33(7), 1696-1706. https://doi.org/10.1002/joc.3543

[13]

Cook, G. D., & Heerdegen, R. G. (2001). Spatial variation in the duration of the rainy season in monsoonal Australia. International Journal of Climatology, 21(14), 1723-1732. https://doi.org/10.1002/joc.704

[14]

Curran, J. P., & Steven, M. D. (1983). Multispectral remote sensing for the estimation of green leaf area index. Philosophical Transactions of the Royal Society, B: Biological Sciences, 309, 257-270. https://doi.org/10.1098/rsta.1983.0039

[15]

Davenport, M. L., & Nicholson, S. E. (1993). On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. International Journal of Remote Sensing, 14(12), 2369-2389. https://doi.org/10.1080/01431169308954042

[16]

Desta, S., & Coppock, D. L. (2002). Cattle population dynamics in the Southern Ethiopian rangelands, 1980-1997. Journal of Range Management, 55, 439-451. https://doi.org/10.2307/4003221

[17]

Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-Day L3 global 250 m SIN grid V006 [Data set]. NASA EOSDIS Land Processes DAAC, (5). Accessed June 10, 2024. https://doi.org/10.5067/MODIS/MOD13Q1.006

[18]

Eklundh, L. (1998). Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. International Journal of Remote Sensing, 19(3), 563-570. https://doi.org/10.1080/014311698216198

[19]

Ellis, J. E., & Swift, D. M. (1988). Stability of African pastoral ecosystems: Alternate paradigms and implications for development. Journal of Range Management, 41(6), 450-459. https://doi.org/10.2307/3899515

[20]

Van Engelen, A., Malope, P., Keyser, K., & Neven, D. (2013). Botswana agrifood value chain project: Beef value chain study (pp. 1-199). FAO.

[21]

Farrar, T., Nicholson, S., & Lare, A. (1994). The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil oisture. Remote Sensing of Environment, 50(2), 121-133. https://doi.org/10.1016/0034-4257(94)90039-6

[22]

Feng, X., Qiu, H., Pan, J., & Tang, J. (2021). The impact of climate change on livestock production in pastoral areas of China. Science of the Total Environment, 770, 144838. https://doi.org/10.1016/j.scitotenv.2020.144838

[23]

Fensholt, R., Sandholt, I., Rasmussen, M. S., Stisen, S., & Diouf, A. (2006). Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sensing of Environment, 105(3), 173-188. https://doi.org/10.1016/j.rse.2006.06.011

[24]

Friedl, M., Henebry, G., Reed, B., Huete, A., White, M., Morisette, J., Nemani, R., Zhang, X., & Myneni, R. (2006). Land Surface Phenology. A Community White Paper Requested by NASA. http://landportal.gsfc.nasa.gov/Documents/ESDR/Phenology_Friedl_whitepaper.pdf.

[25]

Fuller, D. O., & Prince, S. D. (1996). Rainfall and foliar dynamics in tropical Southern Africa: Potential impacts of global climatic change on Savanna vegetation. Climatic Change, 33, 59-96. https://doi.org/10.1007/BF00140514

[26]

Gao, J., Jiao, K., Wu, S., Ma, D., Zhao, D., Yin, Y., & Dai, E. (2017). Past and future effects of climate change on spatially heterogeneous vegetation activity in China. Earth's Future, 5(7), 679-692. https://doi.org/10.1002/2017EF000573

[27]

Ghulam, A., Qin, Q., Teyip, T., & Li, Z. L. (2007). Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS Journal of Photogrammetry and Remote Sensing, 62(2), 150-164. https://doi.org/10.1016/j.isprsjprs.2007.03.002

[28]

Gökçekuş, H., Kassem, Y., & Mphinyane, L. P. (2021). Analysis of spatio-temporal rainfall trends and rainfall variability in Botswana between 1958 and 2019. International Advanced Researches and Engineering Journal, 5(3), 444-453. https://doi.org/10.35860/iarej.906557

[29]

Goward, S. N., Tucker, C. J., & Dye, D. G. (1985). North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio, 64, 3-14. https://doi.org/10.1007/BF00033449

[30]

Grist, J., Nicholson, S. E., & Mpolokang, A. (1997). On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana. Journal of Arid Environments, 35(2), 195-214. https://doi.org/10.1006/jare.1996.0172

[31]

Hidosa, D., & Guyo, M. (2017). Climate change effects on livestock feed resources: A review. Journal of Fisheries & Livestock Production, 5, 250. https://doi.org/10.4172/2332-2608.1000259

[32]

Hielkema, J. U., Prince, S. D., & Astle, W. L. (1986). Rainfall and vegetation monitoring in the savanna zone of the democratic republic of Sudan using the NOAA advanced very high resolution radiometer. International Journal of Remote Sensing, 7(11), 1499-1513. https://doi.org/10.1080/01431168608948950

[33]

Hopkins, A., & Del Prado, A. (2007). Implications of climate change for Grassland in Europe: Impacts, adaptations and mitigation options: A review. Grass and Forage Science, 62(2), 118-126. https://doi.org/10.1111/j.1365-2494.2007.00575.x

[34]

IPPC. (2014). IPCC, 2014: Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

[35]

Joy, A., Dunshea, F. R., Leury, B. J., Clarke, I. J., Digiacomo, K., & Chauhan, S. S. (2020). Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals, 10(5), 867. https://doi.org/10.3390/ani10050867

[36]

Jury, M. R., Weeks, S., & Gondwe, M. P. (1997). Satellite-observed vegetation as an indicator of climate variability over Southern Africa. South African Journal of Science, 93(1), 34-38.

[37]

Kendall, M. G. (1975). Rank correlation methods ( 4th ed.). Charles Griffin.

[38]

Kgosikoma, O. E., & Batisani, N. (2014). Livestock population dynamics and pastoral communities' adaptation to rainfall variability in communal lands of Kgalagadi South, Botswana. Pastoralism, 4, 19. https://doi.org/10.1186/s13570-014-0019-0

[39]

Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11, 3044. https://doi.org/10.1038/s41467-020-16757-w

[40]

Maboa, R. (2016). Spatial and temporal changes in the rainfall patterns of Botswana, 1998 to 2013 Environmental Science, Geograph. University of the Witwatersrand. https://api.semanticscholar.org/CorpusID:59042582

[41]

Malo, A. R., & Nicholson, S. E. (1990). A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. Journal of Arid Environments, 19(1), 1-24. https://doi.org/10.1016/s0140-1963(18)30825-5

[42]

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/1907187

[43]

Masike, S., & Urich, P. (2008). Vulnerability of traditional beef sector to drought and the challenges of climate change: The case of Kgatleng District, Botswana. Journal of Geography and Regional Planning, 1(1), 12-18. https://doi.org/10.5897/JGRP.9000161

[44]

Masike, S., & Urich, P. (2009). The projected cost of climate change to livestock water supply and implications in Kgatleng district, Botswana. World Journal of Agricultural Sciences, 5(5), 597-603.

[45]

Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E., & Collins, S. L. (2020). Sensitivity of primary production to precipitation across the United States. Ecology Letters, 23(3), 527-536. https://doi.org/10.1111/ele.13455

[46]

Mbatha, C. N., & Charalambides, N. (2008). What is really in the economic partnership agreements for the Southern African region? A perspective from Botswana's beef export markets. Agrekon, 47(4), 410-432. https://doi.org/10.1080/03031853.2008.9523808

[47]

McCabe, J. T. (1987). Drought and recovery: Livestock dynamics among the Ngisonyoka Turkana of Kenya. Human Ecology, 15, 371-389. https://doi.org/10.1007/BF00887997

[48]

McCarl, B. A., Villavicencio, X., & Wu, X. (2008). Climate change and future analysis: Is stationarity dying? American Journal of Agricultural Economics, 90(5), 1241-1247. https://doi.org/10.1111/j.1467-8276.2008.01211.x

[49]

Midgley, J. J., Kruger, L. M., & Skelton, R. (2011). How do fires kill plants? The hydraulic death hypothesis and cape proteaceae “fire-resisters”. South African Journal of Botany, 77(2), 381-386. https://doi.org/10.1016/j.sajb.2010.10.001

[50]

Naidoo, S., Davis, C., & Van Garderen, E. A. (2013). Forests, rangelands and climate change in Southern Africa. www.fao.org/publications

[51]

Nicholson, S., & Farrar, T. (1994). The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sensing of Environment, 50(2), 107-120. https://doi.org/10.1016/0034-4257(94)90038-8

[52]

Nicholson, S. E., Davenport, M. L., & Malo, A. R. (1990). A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic Change, 17, 209-241. https://doi.org/10.1007/BF00138369

[53]

Nielsen, U. N., & Ball, B. A. (2015). Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21(4), 1407-1421. https://doi.org/10.1111/gcb.12789

[54]

Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest, N. E. C., Depoorter, M., & Waegeman, W. (2017). Vegetation anomalies caused by antecedent precipitation in most of the world. Environmental Research Letters, 12(7), 074016. https://doi.org/10.1088/1748-9326/aa7145

[55]

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011

[56]

Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R. I., & Anderson, G. L. (2008). Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: A case study of saltcedar in Nevada, USA. International Journal of Remote Sensing, 29(14), 3987-4011. https://doi.org/10.1080/01431160801908095

[57]

De Queiroz, J. S. (1993). Range degradation in Botswana: Myth or reality? Pastoral Development Network paper. http://www.odi.org.uk/pdn/

[58]

Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the vegetation dryness index (VDI), the temperature vegetation dryness index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1-12. https://doi.org/10.1016/j.isprsjprs.2011.10.009

[59]

Richard, Y., & Poccard, I. (1998). A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. International Journal of Remote Sensing, 19(15), 2907-2920. https://doi.org/10.1080/014311698214343

[60]

Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., Keating, A. F., & Baumgard, L. H. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Molecular Reproduction and Development, 84(9), 934-945. https://doi.org/10.1002/mrd.22859

[61]

Rouault, M., Dieppois, B., Tim, N., Hünicke, B., & Zorita, E. (2024). Southern Africa climate over the recent decades: Description, variability and trends. https://doi.org/10.1007/978-3-031-10948-5_6

[62]

Rust, J. M. (2019). The impact of climate change on extensive and intensive livestock production systems. Animal Frontiers, 9(1), 20-25. https://doi.org/10.1093/af/vfy028

[63]

Schucknecht, A., Erasmi, S., Niemeyer, I., & Matschullat, J. (2013). Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. European Journal of Remote Sensing, 46(1), 40-59. https://doi.org/10.5721/EuJRS20134603

[64]

Sejian, V., Silpa, M. V., Reshma Nair, M. R., Devaraj, C., Krishnan, G., Bagath, M., Chauhan, S. S., Suganthi, R. U., Fonseca, V. F. C., König, S., Gaughan, J. B., Dunshea, F. R., & Bhatta, R. (2021). Heat stress and goat welfare: Adaptation and production considerations. Animals, 11(4), 1021. https://doi.org/10.3390/ani11041021

[65]

Seleka, T. B., & Kebakile, P. G. (2016). Export competitiveness of Botswana's beef industry (BIDPA Working Paper No. 42). SSRN Electronic. https://doi.org/10.2139/ssrn.2819998

[66]

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63, 1379-1389. https://doi.org/10.1080/01621459.1968.10480934

[67]

Sithole, A., & Murewi, C. T. F. (2009). Climate variability and change over Southern Africa: Impacts and challenges. African Journal of Ecology, 47(s1), 17-20. https://doi.org/10.1111/j.1365-2028.2008.01045.x

[68]

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Miller, M. T., Solomon, H. L., Qin, S., Manning, D., Chen, M., Marquis, Z., Averyt, M., Tignor, K. B., & Miller, H. L. (2007). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

[69]

Soomro, S. E. H., Hu, C., Jian, S., Wu, Q., Boota, M. W., & Soomro, M. H. A. A. (2021). Precipitation changes and their relationships with vegetation responses during 1982-2015 in Kunhar River basin, Pakistan. Water Supply, 21(7), 3657-3671. https://doi.org/10.2166/ws.2021.129

[70]

Spano, D., Cesaraccio, C., Duce, P., & Snyder, R. L. (1999). Phenological stages of natural species and their use as climate indicators. International Journal of Biometeorology, 42(3), 124-133. https://doi.org/10.1007/s004840050095

[71]

Statistics Botswana. (2013). Causes of Mortality. Statistics Botswana's Health Statistics Unit (HSU) (pp. 11-15). Available at https://www.statsbots.org.bw/sites/default/files/publications/Botswana%20Causes%20of%20Mortality%202013_0.pdf

[72]

Statistics Botswana. (2014). Statistics Botswana annual agricultural survey report 2014. www.cso.gov.bw

[73]

Statistics Botswana. (2019). Annual Agricultural Survey Report 2017. Published by Statistics Botswana Private Bag 0024, Gaborone. Available at http://www.statsbots.org.bw/sites/default/files/ANNUAL%20AGRIC%20SUVEY%202017.pdf

[74]

Statistics Botswana. (2022). http://www.statsbots.org.bw

[75]

Stige, L. C., Stave, J., Chan, K. S., Ciannelli, L., Pettorelli, N., Glantz, M., Herren, H. R., & Stenseth, N. C. (2006). The effect of climate variation on agro-pastoral production in Africa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3049-3053. https://doi.org/10.1073/pnas.0600057103

[76]

Stringer, L. C., Dyer, J. C., Reed, M. S., Dougill, A. J., Twyman, C., & Mkwambisi, D. (2009). Adaptations to climate change, drought and desertification: Local insights to enhance policy in Southern Africa. Environmental Science & Policy, 12(7), 748-765. https://doi.org/10.1016/j.envsci.2009.04.002

[77]

Sulieman, H. M., & Elagib, N. A. (2012). Implications of climate, land-use and land-cover changes for pastoralism in eastern Sudan. Journal of Arid Environments, 85, 132-141. https://doi.org/10.1016/j.jaridenv.2012.05.001

[78]

Svoray, T., Perevolotsky, A., & Atkinson, P. M. (2013). Ecological sustainability in rangelands: The contribution of remote sensing. International Journal of Remote Sensing, 34(17), 6216-6242. https://doi.org/10.1080/01431161.2013.793867

[79]

Thomas, D. S. G., Knight, M., & Wiggs, G. F. S. (2005). Remobilization of Southern African desert dune systems by twenty-first century global warming. Nature, 435, 1218-1221. https://doi.org/10.1038/nature03717

[80]

Thomas, D. S. G., Sporton, D., & Perkins, J. (2000). The environmental impact of livestock ranches in the Kalahari, Botswana: Natural resource use, ecological change and human response in a dynamic dryland system. Land Degradation & Development, 11(4), 327-341. https://doi.org/10.1002/1099-145X(200007/08)11:4<327::AID-LDR395>3.0.CO;2-V

[81]

Vågen, T. G., Lal, R., & Singh, B. R. (2005). Soil carbon sequestration in sub-saharan Africa: A review. Land Degradation & Development, 16(1), 53-71. https://doi.org/10.1002/ldr.644

[82]

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1

[83]

Wilks, D. S. (2007). Statistical methods in the atmospheric sciences. In Meteorological applications (2nd ed., Vol. 14, Issue 2).

[84]

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 12(6), 851-870. https://doi.org/10.1002/wcc.147

[85]

Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., Stuart-Hill, S., Myers, J., & Warburton, M. (2014). Climate change impacts and adaptation in South Africa. Wiley Interdisciplinary Reviews: Climate Change, 5(5), 605-620. https://doi.org/10.1002/wcc.295

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/