From life cycle assessment to grass-based agriculture: A review and application

Yutong Li , Shu Jin , Xiaoping Xin , Yi An , Lili Huo , Changliang Shao , Lulu Wang , Xiaoyu Zhu

Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 161 -174.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 161 -174. DOI: 10.1002/glr2.70007
REVIEW ARTICLE

From life cycle assessment to grass-based agriculture: A review and application

Author information +
History +
PDF

Abstract

Life cycle assessment (LCA) serves as an essential tool for the quantitative evaluation of production efficiency, environmental impacts, and sustainability across the entire life cycle of grass-based agricultural systems. This study systematically examines the progress of LCA applications in grass-based agriculture, analyzes the shortcomings of current methods, and proposes a new LCA approach based on an economic, social, and environmental multidimensional framework. The study emphasizes (1) the selection of LCA methods should align with specific research objectives, focusing not only on environmental impacts but also comprehensively considering social impacts and economic benefits; (2) it provides a comprehensive overview with an expanded scope selection beyond the “from cradle to farm gate” boundary and uses product value as the functional unit to facilitate assessments across various crop types, particularly focusing on inventory analysis and impact assessment; (3) challenges including model integration, impact sensitivity, and data uncertainty persist in the LCA of grass-based agriculture; and (4) multidimensional frameworks effectively integrate both quantitative and qualitative factors into grass-based agriculture, further enhancing the understanding of LCA results and supporting decision-making. Addressing these challenges through the integration of LCA with other models facilitates the sustainable evolution of grass-based agriculture, ensuring its long-term viability.

Keywords

grass-based agriculture / impact assessment / inventory / life cycle assessment (LCA) / model integration / sustainability

Cite this article

Download citation ▾
Yutong Li, Shu Jin, Xiaoping Xin, Yi An, Lili Huo, Changliang Shao, Lulu Wang, Xiaoyu Zhu. From life cycle assessment to grass-based agriculture: A review and application. Grassland Research, 2025, 4(2): 161-174 DOI:10.1002/glr2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agez, M., Muller, E., Patouillard, L., Södersten, C. J. H., Arvesen, A., Margni, M., Samson, R., & Majeau-Bettez, G. (2022). Correcting remaining truncations in hybrid life cycle assessment database compilation. Journal of Industrial Ecology, 26(1), 121-133. https://doi.org/10.1111/jiec.13132

[2]

Álvarez-Rodríguez, C., Martín-Gamboa, M., & Iribarren, D. (2020). Sensitivity of operational and environmental benchmarks of retail stores to decision-makers’ preferences through Data Envelopment Analysis. Science of the Total Environment, 718, 137330. https://doi.org/10.1016/j.scitotenv.2020.137330

[3]

Amirahmadi, E., Moudrý, J., Konvalina, P., Hörtenhuber, S. J., Ghorbani, M., Neugschwandtner, R. W., Jiang, Z., Krexner, T., & Kopecký, M. (2022). Environmental life cycle assessment in organic and conventional rice farming systems: Using a cradle to farm gate approach. Sustainability, 14(23), 15870. https://doi.org/10.3390/su142315870

[4]

Benetto, E., Dujet, C., & Rousseaux, P. (2008). Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment. Environmental Modelling & Software, 23(12), 1461-1467. https://doi.org/10.1016/j.envsoft.2008.04.008

[5]

Björklund, A. E. (2002). Survey of approaches to improve reliability in LCA. The International Journal of Life Cycle Assessment, 7(2), 64-72. https://doi.org/10.1065/lca2001.12/071

[6]

Bonilla-Alicea, R. J., & Fu, K. (2021). Evaluation of a challenge-derived social life cycle assessment (S-LCA) framework. International Journal of Sustainable Engineering, 14(6), 1680-1697. https://doi.org/10.1080/19397038.2021.2004258

[7]

Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. European Journal of Agronomy, 20(3), 247-264. https://doi.org/10.1016/S1161-0301(03)00024-8

[8]

Chatterton, J., Graves, A., Audsley, E., Morris, J., & Williams, A. (2015). Using systems-based life cycle assessment to investigate the environmental and economic impacts and benefits of the livestock sector in the UK. Journal of Cleaner Production, 86, 1-8. https://doi.org/10.1016/j.jclepro.2014.05.103

[9]

Cinelli, M., Kadzinski, M., Gonzalez, M., & Slowinski, R. (2020). How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega-International Journal of Management Science, 96, 102261. https://doi.org/10.1016/j.omega.2020.102261

[10]

Clavreul, J., Guyonnet, D., & Christensen, T. H. (2012). Quantifying uncertainty in LCA-modelling of waste management systems. Waste Management, 32(12), 2482-2495. https://doi.org/10.1016/j.wasman.2012.07.008

[11]

Colley, T. A., Olsen, S. I., Birkved, M., & Hauschild, M. Z. (2020). Delta life cycle assessment of regenerative agriculture in a sheep farming system. Integrated Environmental Assessment and Management, 16(2), 282-290. https://doi.org/10.1002/ieam.4238

[12]

Cong, R. G., Stefaniak, I., Madsen, B., Dalgaard, T., Jensen, J. D., Nainggolan, D., & Termansen, M. (2017). Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries. Land Use Policy, 68, 141-151. https://doi.org/10.1016/j.landusepol.2017.07.036

[13]

Cooper, J. S. (2003). Specifying functional units and reference flows for comparable alternatives. The International Journal of Life Cycle Assessment, 8(6), 337-349. https://doi.org/10.1007/BF02978507

[14]

Crawford, R. H. (2008). Validation of a hybrid life-cycle inventory analysis method. Journal of Environmental Management, 88(3), 496-506. https://doi.org/10.1016/j.jenvman.2007.03.024

[15]

Cusi, R. C., & Navarro, E. F. (2023). Carbon footprint in the value chain of Paria cheese from the Lake Titicaca basin area. Revista Investigaciones Altoandinas-Journal of High Andean Research, 25(4), 213-223. https://doi.org/10.18271/ria.2023.565

[16]

Dias, L. C., Passeira, C., Malça, J., & Freire, F. (2022). Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Annals of Operations Research, 312(2), 1359-1374. https://doi.org/10.1007/s10479-016-2329-7

[17]

Dong, S., Liu, Z., & Yun, X. (2002). Sustainable development of grassland agriculture and related major problems in China. Pratacultural Science, 19(4), 46-49.

[18]

Du, C., Dias, L. C., & Freire, F. (2019). Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. Journal of Cleaner Production, 218, 708-717. https://doi.org/10.1016/j.jclepro.2019.02.035

[19]

Fan, J., Liu, C., Xie, J., Han, L., Zhang, C., Guo, D., Niu, J., Jin, H., & McConkey, B. G. (2022). Life cycle assessment on agricultural production: A mini review on methodology, application, and challenges. International Journal of Environmental Research and Public Health, 19(16), 9817. https://doi.org/10.3390/ijerph19169817

[20]

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1-21. https://doi.org/10.1016/j.jenvman.2009.06.018

[21]

Fotia, K., Mehmeti, A., Tsirogiannis, I., Nanos, G., Mamolos, A. P., Malamos, N., Barouchas, P., & Todorovic, M. (2021). LCA-based environmental performance of olive cultivation in northwestern Greece: From rainfed to irrigated through conventional and smart crop management practices. Water, 13(14), 1954. https://doi.org/10.3390/w13141954

[22]

Frischknecht, R. (2006). Notions on the design and use of an ideal regional or global LCA database. The International Journal of Life Cycle Assessment, 11, 40-48. https://doi.org/10.1065/lca2006.04.010

[23]

Frischknecht, R., & Rebitzer, G. (2005). The ecoinvent database system: A comprehensive web-based LCA database. Journal of Cleaner Production, 13(13-14), 1337-1343. https://doi.org/10.1016/j.jclepro.2005.05.002

[24]

Fritter, M., Lawrence, R., Marcolin, B., & Pelletier, N. (2020). A survey of life cycle inventory database implementations and architectures, and recommendations for new database initiatives. The International Journal of Life Cycle Assessment, 25(8), 1522-1531. https://doi.org/10.1007/s11367-020-01745-5

[25]

Gac, A., Dollé, J. B., & Le Gall, A. (2020). Benefits and limits of life-cycle analysis for assessing the environmental impacts of products obtained from herbivore livestock farming. Fourrages, (243), 43-48.

[26]

Gentil, C., Basset-Mens, C., Manteaux, S., Mottes, C., Maillard, E., Biard, Y., & Fantke, P. (2020). Coupling pesticide emission and toxicity characterization models for LCA: Application to open-field tomato production in Martinique. Journal of Cleaner Production, 277, 124099. https://doi.org/10.1016/j.jclepro.2020.124099

[27]

Guo, Y., Liu, H., & Guo, B. (2014). Review of key issues on product life cycle assessment. Computer Integrated Manufacturing Systems, 20(5), 1141-1148.

[28]

Haas, G., Wetterich, F., & Geier, U. (2000). Life cycle assessment framework in agriculture on the farm level. The International Journal of Life Cycle Assessment, 5(6), 345-348. https://doi.org/10.1007/BF02978669

[29]

Harris, Z. M., Spake, R., & Taylor, G. (2015). Land use change to bioenergy: A meta-analysis of soil carbon and GHG emissions. Biomass and Bioenergy, 82, 27-39. https://doi.org/10.1016/j.biombioe.2015.05.008

[30]

Hauggaard-Nielsen, H., Lachouani, P., Knudsen, M. T., Ambus, P., Boelt, B., & Gislum, R. (2016). Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input. Science of the Total Environment, 541, 1339-1347. https://doi.org/10.1016/j.scitotenv.2015.10.013

[31]

Havranek, T. J. (2019). Multi-criteria decision analysis for environmental remediation: Benefits, challenges, and recommended practices. Remediation-the Journal of Environmental Cleanup Costs Technologies & Techniques, 29(2), 93-108. https://doi.org/10.1002/rem.21589

[32]

Heijungs, R., Guinée, J. B., Mendoza Beltrán, A., Henriksson, P. J. G., & Groen, E. (2019). Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA. The International Journal of Life Cycle Assessment, 24(9), 1573-1579. https://doi.org/10.1007/s11367-019-01666-y

[33]

Horn, R., Ebertshäuser, S., Di Bari, R., Jorgji, O., Traunspurger, R., & von Both, P. (2020). The BIM2LCA approach: An industry foundation classes (IFC)-based interface to integrate life cycle assessment in integral planning. Sustainability, 12(16), 6558. https://doi.org/10.3390/su12166558

[34]

Huang, N., Wang, H., Fan, C., Zhou, S., Hou, P., & Yang, J. (2012). LCA data quality assessment and control based on uncertainty and sensitivity analysis. Acta Scientiae Circumstantiae, 32(6), 1529-1536.

[35]

Igos, E., Benetto, E., Meyer, R., Baustert, P., & Othoniel, B. (2019). How to treat uncertainties in life cycle assessment studies? The International Journal of Life Cycle Assessment, 24(4), 794-807. https://doi.org/10.1007/s11367-018-1477-1

[36]

Jiang, M. H., Liu, X. C., Tang, H. J., Xin, X. P., Chen, J. Q., Dong, G., Wu, R. Q., & Shao, C. L. (2019). Research progress and prospect of life cycle assessment in animal husbandry. Scientia Agricultura Sinica, 52(9), 1635-1645. https://doi.org/10.3864/j.issn.0578-1752.2019.09.014

[37]

Jiang, Q., Li, T., Liu, Z., Zhang, H., & Ren, K. (2014). Life cycle assessment of an engine with input-output based hybrid analysis method. Journal of Cleaner Production, 78, 131-138. https://doi.org/10.1016/j.jclepro.2014.04.003

[38]

Jianyi, L., Yuanchao, H., Shenghui, C., Jiefeng, K., & Lilai, X. (2015). Carbon footprints of food production in China (1979-2009). Journal of Cleaner Production, 90, 97-103. https://doi.org/10.1016/j.jclepro.2014.11.072

[39]

Kambanou, M. L. (2020). Life cycle costing: Understanding how it is practised and its relationship to life cycle management-a case study. Sustainability, 12(8), 3252. https://doi.org/10.3390/su12083252

[40]

Keeler, B. L., & Polasky, S. (2014). Land-use change and costs to rural households: A case study in groundwater nitrate contamination. Environmental Research Letters, 9(7), 074002. https://doi.org/10.1088/1748-9326/9/7/074002

[41]

Knudsen, M. T., Hermansen, J. E., Cederberg, C., Herzog, F., Vale, J., Jeanneret, P., Sarthou, J. P., Friedel, J. K., Balázs, K., Fjellstad, W., Kainz, M., Wolfrum, S., & Dennis, P. (2017). Characterization factors for land use impacts on biodiversity in life cycle assessment based on direct measures of plant species richness in European farmland in the ‘Temperate Broadleaf and Mixed Forest’ biome. Science of the Total Environment, 580, 358-366. https://doi.org/10.1016/j.scitotenv.2016.11.172

[42]

Kutlu, L. (2020). Greenhouse gas emission efficiencies of world countries. International Journal of Environmental Research and Public Health, 17(23), 8771. https://doi.org/10.3390/ijerph17238771

[43]

Laurent, A., Weidema, B. P., Bare, J., Liao, X., Maia de Souza, D., Pizzol, M., Sala, S., Schreiber, H., Thonemann, N., & Verones, F. (2020). Methodological review and detailed guidance for the life cycle interpretation phase. Journal of Industrial Ecology, 24(5), 986-1003. https://doi.org/10.1111/jiec.13012

[44]

Li, B. (2002). Life cycle assessment-approach on method of inventory analysis. Shanghai Environmental Science, 21(5), 308-310.

[45]

Ling, L., Shuai, Y. J., Xu, Y., Zhang, Z. S., Wang, B., You, L. Z., Sun, Z. C., Zhang, H. R., Zhan, M., Li, C. F., Wang, J. P., Jiang, Y., Maimaitizunong, A., & Cao, C. G. (2021). Comparing rice production systems in China: Economic output and carbon footprint. Science of the Total Environment, 791(9), 147890. https://doi.org/10.1016/j.scitotenv.2021.147890

[46]

Liu, J. W. (2008). Reform and development of Chinese grassland in 30 years—A presentation in agricultural area grass industry development forum of youth committee of Chinese grassland society. Acta Agrestia Sinica, 16(6), 547-551.

[47]

Liu, X., Wang, H., Chen, J., He, Q., Zhang, H., Jiang, R., Chen, X., & Hou, P. (2010). Method and basic model for development of Chinese reference life cycle database. Acta Scientiae Circumstantiae, 30(10), 2136-2144.

[48]

De Luca, A. I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., & Gulisano, G. (2017). Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Science of the Total Environment, 595, 352-370. https://doi.org/10.1016/j.scitotenv.2017.03.284

[49]

Lucas, K. R. G., Antón, A., Ventura, M. U., Andrade, E. P., & Ralisch, R. (2021). Using the available indicators of potential biodiversity damage for life cycle assessment on soybean crop according to Brazilian ecoregions. Ecological Indicators, 127, 107809. https://doi.org/10.1016/j.ecolind.2021.107809

[50]

Lüscher, G., Nemecek, T., Arndorfer, M., Balázs, K., Dennis, P., Fjellstad, W., Friedel, J. K., Gaillard, G., Herzog, F., Sarthou, J. P., Stoyanova, S., Wolfrum, S., & Jeanneret, P. (2017). Biodiversity assessment in LCA: A validation at field and farm scale in eight European regions. The International Journal of Life Cycle Assessment, 22(10), 1483-1492. https://doi.org/10.1007/s11367-017-1278-y

[51]

Lyu, Y. F., Raugei, M., Zhang, X. H., Mellino, S., & Ulgiati, S. (2021). Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and life cycle assessment. Renewable & Sustainable Energy Reviews, 151, 111604. https://doi.org/10.1016/j.rser.2021.111604

[52]

Maciol, A., & Rebiasz, B. (2018). Multicriteria decision analysis (MCDA) methods in life cycle assessment (LCA). A comparison of private passenger vehicles. Operations Research and Decisions, 28(1), 5-26. https://doi.org/10.5277/ord180101

[53]

Magomedov, I. A., Dzhabrailov, Z. A., & Bagov, A. M. (2021). Subsistence agriculture and global warming. IOP Conference Series: Earth and Environmental Science, 677, 032109. https://doi.org/10.1088/1755-1315/677/3/032109

[54]

Mehmeti, A., & Canaj, K. (2022). Environmental assessment of wastewater treatment and reuse for irrigation: A mini-review of LCA studies. Resources-Basel, 11(10), 94. https://doi.org/10.3390/resources11100094

[55]

Meier, M. S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., & Stolze, M. (2015). Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment? Journal of Environmental Management, 149, 193-208. https://doi.org/10.1016/j.jenvman.2014.10.006

[56]

Miller, S. A., & Theis, T. L. (2006). Comparison of life-cycle inventory databases—A case study using soybean production. Journal of Industrial Ecology, 10(1-2), 133-147. https://doi.org/10.1162/108819806775545358

[57]

Montemayor, E., Andrade, E. P., Bonmatí, A., & Antón, A. (2022). Critical analysis of life cycle inventory datasets for organic crop production systems. The International Journal of Life Cycle Assessment, 27(4), 543-563. https://doi.org/10.1007/s11367-022-02044-x

[58]

Morais, T. G., Teixeira, R. F. M., & Domingos, T. (2016). Regionalization of agri-food life cycle assessment: A review of studies in Portugal and recommendations for the future. The International Journal of Life Cycle Assessment, 21(6), 875-884. https://doi.org/10.1007/s11367-016-1055-3

[59]

Nakano, K. (2015). Life-cycle assessment framework for adaptation planning to climate change: Linking regional climate impact with product design. The International Journal of Life Cycle Assessment, 20(6), 819-828. https://doi.org/10.1007/s11367-015-0867-x

[60]

Nguyen, T. T. H., Corson, M. S., Doreau, M., Eugène, M., & van der Werf, H. M. G. (2013). Consequential LCA of switching from maize silage-based to grass-based dairy systems. The International Journal of Life Cycle Assessment, 18(8), 1470-1484. https://doi.org/10.1007/s11367-013-0605-1

[61]

Nitschelm, L., Flipo, B., Auberger, J., Chambaut, H., Dauguet, S., Espagnol, S., Gac, A., Le Gall, C., Malnoé, C., Perrin, A., Ponchant, P., Renaud-Gentié, C., Tailleur, A., & van der Werf, H. M. G. (2021). Life cycle assessment data of French organic agricultural products. Data in Brief, 38, 107356. https://doi.org/10.1016/j.dib.2021.107356

[62]

Núñez-Cárdenas, P., San Miguel, G., Báñales, B., Álvarez, S., Diezma, B., & Correa, E. C. (2022). The carbon footprint of stone fruit production: Comparing process-based life cycle assessment and environmentally extended input-output analysis. Journal of Cleaner Production, 381, 135130. https://doi.org/10.1016/j.jclepro.2022.135130

[63]

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535-569. https://doi.org/10.1080/10705510701575396

[64]

O'Brien, D., Brennan, P., Humphreys, J., Ruane, E., & Shalloo, L. (2014). An appraisal of carbon footprint of milk from commercial grass-based dairy farms in Ireland according to a certified life cycle assessment methodology. The International Journal of Life Cycle Assessment, 19(8), 1469-1481. https://doi.org/10.1007/s11367-014-0755-9

[65]

O'Brien, D., Herron, J., Andurand, J., Caré, S., Martinez, P., Migliorati, L., Moro, M., Pirlo, G., & Dollé, J. B. (2020). Life beef carbon: A common framework for quantifying grass and corn based beef farms’ carbon footprints. Animal, 14(4), 834-845. https://doi.org/10.1017/s1751731119002519

[66]

O'Brien, D., Shalloo, L., Grainger, C., Buckley, F., Horan, B., & Wallace, M. (2010). The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms. Journal of Dairy Science, 93(7), 3390-3402. https://doi.org/10.3168/jds.2009-2790

[67]

Ohm, M., Schüler, M., Warnecke, S., Paulsen, H. M., & Rahmann, G. (2014). Measurement methods on pastures and their use in environmental life-cycle assessment. Organic Agriculture, 4(4), 325-329. https://doi.org/10.1007/s13165-014-0072-4

[68]

Ohm, M. R., Lee, H. Y., & Shin, J. Y. (2013). L2-error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations. Japan Journal of Industrial and Applied Mathematics, 30(1), 91-110. https://doi.org/10.1007/s13160-012-0096-7

[69]

Patouillard, L., Lorne, D., Collet, P., Bulle, C., & Margni, M. (2020). Prioritizing regionalization to enhance interpretation in consequential life cycle assessment: Application to alternative transportation scenarios using partial equilibrium economic modeling. The International Journal of Life Cycle Assessment, 25(12), 2325-2341. https://doi.org/10.1007/s11367-020-01785-x

[70]

Payen, S., Basset-Mens, C., Colin, F., & Roignant, P. (2018). Inventory of field water flows for agri-food LCA: Critical review and recommendations of modelling options. The International Journal of Life Cycle Assessment, 23(6), 1331-1350. https://doi.org/10.1007/s11367-017-1353-4

[71]

Philipp, D., Putman, B., & Thoma, G. (2019). ASAS-CSAS annual meeting symposium on water use efficiency at the forage-animal interface: Life cycle assessment of forage-based livestock production systems. Journal of Animal Science, 97(4), 1865-1873. https://doi.org/10.1093/jas/skz035

[72]

Pradel, M., Rousselet, M., Pacaud, T., & Lacour, S. (2010). Improving environmental performances of organic spreading technologies through the use of life cycle assessment. Publication Number 978-2-85362-684-2. Conference paper. http://www.cemagref.fr/nos-produits/colloques/ageng-2010-clermont-ferrand-1/conf

[73]

Pradeleix, L., Roux, P., Bouarfa, S., & Bellon-Maurel, V. (2022). Multilevel environmental assessment of regional farming activities with life cycle assessment: Tackling data scarcity and farm diversity with life cycle inventories based on agrarian system diagnosis. Agricultural Systems, 196, 103328. https://doi.org/10.1016/j.agsy.2021.103328

[74]

Prado, V., Cinelli, M., Ter Haar, S. F., Ravikumar, D., Heijungs, R., Guinée, J., & Seager, T. P. (2020). Sensitivity to weighting in life cycle impact assessment (LCIA). The International Journal of Life Cycle Assessment, 25(12), 2393-2406. https://doi.org/10.1007/s11367-019-01718-3

[75]

Prins, W. H. (2004). A history of the European Grassland Federation, 1963-2003. Grass and Forage Science, 59(1), 2-7. https://doi.org/10.1111/j.1365-2494.2004.00403.x

[76]

Radzka, E. (2019). Effects of rainfall shortage and climatic water balance change on agriculture. Applied Ecology and Environmental Research, 17(4), 7667-7678. https://doi.org/10.15666/aeer/1704_76677678

[77]

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005

[78]

Romero-Perdomo, F., & González-Curbelo, M. Á. (2023). Integrating multi-criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review. Sustainability, 15(6), 5026. https://doi.org/10.3390/su15065026

[79]

Rota Graziosi, A., Gislon, G., Colombini, S., Bava, L., & Rapetti, L. (2022). Partial replacement of soybean meal with soybean silage and responsible soybean meal in lactating cows diet: Part 2, environmental impact of milk production. Italian Journal of Animal Science, 21(1), 645-658. https://doi.org/10.1080/1828051x.2021.2010611

[80]

Rotz, C. A., Montes, F., & Chianese, D. S. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science, 93(3), 1266-1282. https://doi.org/10.3168/jds.2009-2162

[81]

Ruviaro, C. F., de Léis, C. M., Lampert, V. N., Barcellos, J. O. J., & Dewes, H. (2015). Carbon footprint in different beef production systems on a Southern Brazilian farm: A case study. Journal of Cleaner Production, 96, 435-443. https://doi.org/10.1016/j.jclepro.2014.01.037

[82]

Sharma, P., Humphreys, J., & Holden, N. M. (2018). The effect of local climate and soil drainage on the environmental impact of grass-based milk production. The International Journal of Life Cycle Assessment, 23(1), 26-40. https://doi.org/10.1007/s11367-017-1302-2

[83]

Shortall, O. K., & Lorenzo-Arribas, A. (2022). Dairy farmer practices and attitudes relating to grass-based, high-feed-input, and indoor production systems in Ireland. Journal of Dairy Science, 105(1), 375-388. https://doi.org/10.3168/jds.2021-20525

[84]

Skowrońska, M., & Filipek, T. (2014). Life cycle assessment of fertilizers: A review. International Agrophysics, 28(1), 101-110. https://doi.org/10.2478/intag-2013-0032

[85]

Solarte-Toro, J. C., Ortiz-Sanchez, M., & Cardona Alzate, C. A. (2023). Environmental life cycle assessment (E-LCA) and social impact assessment (SIA) of small-scale biorefineries implemented in rural zones: The avocado (Persea Americana var. Americana) case in Colombia. Environmental Science and Pollution Research, 30(4), 8790-8808. https://doi.org/10.1007/s11356-022-20857-z

[86]

Steubing, B., & de Koning, D. (2021). Making the use of scenarios in LCA easier: The superstructure approach. The International Journal of Life Cycle Assessment, 26(11), 2248-2262. https://doi.org/10.1007/s11367-021-01974-2

[87]

Teixeira, R. F. M., Morais, T. G., & Domingos, T. (2018). A practical comparison of regionalized land use and biodiversity life cycle impact assessment models using livestock production as a case study. Sustainability, 10(11), 4089. https://doi.org/10.3390/su10114089

[88]

Vimpolsek, B., Jereb, B., Lerher, T., Kutnar, A., & Lisec, A. (2019). Models for life cycle assessment: Review of technical assumptions in collection and transportation processes. Tehnicki Vjesnik-Technical Gazette, 26(6), 1861-1868. https://doi.org/10.17559/TV-20181209160911

[89]

Wang, Q., Zhang, Y., Tian, S., Yuan, X., Ma, Q., Liu, M., Li, Y., & Liu, J. (2021). Evaluation and optimization of a circular economy model integrating planting and breeding based on the coupling of emergy analysis and life cycle assessment. Environmental Science and Pollution Research, 28(44), 62407-62420. https://doi.org/10.1007/s11356-021-15101-z

[90]

Wang, S., Tang, X., Wang, J., Zhang, B., Sun, W., & Höök, M. (2021). Environmental impacts from conventional and shale gas and oil development in China considering regional differences and well depth. Resources, Conservation and Recycling, 167, 105368. https://doi.org/10.1016/j.resconrec.2020.105368

[91]

Wang, T., Jin, H., Kreuter, U., & Teague, R. (2021). Expanding grass-based agriculture on marginal land in the US Great Plains: The role of management intensive grazing. Land Use Policy, 104, 105155. https://doi.org/10.1016/j.landusepol.2020.105155

[92]

Wang, Y., Dong, J., Liu, J. R., Zheng, R. F., Yue, Y., Zhang, Y., & Qian, G. R. (2022). Toward a sustainable municipal solid waste incineration fly-ash utilization network: Integrating hybrid life cycle assessment with multiobjective optimization. ACS Sustainable Chemistry & Engineering, 10(23), 7635-7647. https://doi.org/10.1021/acssuschemeng.2c01468

[93]

Wegener Sleeswijk, A. (2011). Regional LCA in a global perspective. A basis for spatially differentiated environmental life cycle assessment. The International Journal of Life Cycle Assessment, 16(2), 106-112. https://doi.org/10.1007/s11367-010-0247-5

[94]

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218-1230. https://doi.org/10.1007/s11367-016-1087-8

[95]

Wu, S. R., Liu, X., Wang, L., Xin, X., Chen, J., & Shao, C. (2021). Life cycle assessment of dairy production systems in inner Mongolia: Reiterate LCA modeling approaches. The International Journal of Life Cycle Assessment, 26(8), 1670-1686. https://doi.org/10.1007/s11367-021-01951-9

[96]

Wu, S. R., & Wang, L. (2022). Higher transparency: A desideratum in environmental life cycle assessment research. Journal of Cleaner Production, 374, 134074. https://doi.org/10.1016/j.jclepro.2022.134074

[97]

Xing, Z., Wang, J., & Zhang, J. (2018). Expansion of environmental impact assessment for eco-efficiency evaluation of China's economic sectors: An economic input-output based frontier approach. Science of the Total Environment, 635, 284-293. https://doi.org/10.1016/j.scitotenv.2018.04.076

[98]

Yan, M. J., Humphreys, J., & Holden, N. M. (2011). An evaluation of life cycle assessment of European milk production. Journal of Environmental Management, 92(3), 372-379. https://doi.org/10.1016/j.jenvman.2010.10.025

[99]

Yuan, C., Wang, E., Zhai, Q., & Yang, F. (2015). Temporal discounting in life cycle assessment: A critical review and theoretical framework. Environmental Impact Assessment Review, 51, 23-31. https://doi.org/10.1016/j.eiar.2015.01.001

[100]

Zeug, W., Bezama, A., & Thrän, D. (2021). A framework for implementing holistic and integrated life cycle sustainability assessment of regional bioeconomy. The International Journal of Life Cycle Assessment, 26(10), 1998-2023. https://doi.org/10.1007/s11367-021-01983-1

[101]

Zhang, Y. (2023). Understanding of grass-based livestock husbandry. Chinese Journal of Grassland, 45(7), 1-5. https://doi.org/10.16742/j.zgcdxb.20220409

[102]

Zhang, Y., Huang, Y., Liu, Y., Fan, Y., Peng, J., Tang, Z., Xia, C., & Nan, Z. (2023). Strategic thinking on developing grassland agriculture to ensure China's food security under the new situation. Chinese Journal of Engineering Science, 25(4), 73-80. https://doi.org/10.15302/J-SSCAE-2023.04.007

[103]

Zhao, X., Klemeš, J. J., Saxon, M., & You, F. (2022). How sustainable are the biodegradable medical gowns via environmental and social life cycle assessment? Journal of Cleaner Production, 380, 135153. https://doi.org/10.1016/j.jclepro.2022.135153

[104]

Zhu, X., An, Y., Liu, Z., Yan, R., Shao, C., Xu, D., Xu, L., Sun, Z., Wang, D., Zhang, H.,Xin, X. (2023). Comparing ecological effect between traditional cropland and alfalfa grassland based on life cycle assessment. Acta Ecologica Sinica, 43(22), 9148-9163. https://doi.org/10.20103/j.stxb.202307191547

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/