Selection of meadow fescue for persistence under frequent defoliation

Michael D. Casler

Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 131 -139.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (2) : 131 -139. DOI: 10.1002/glr2.70005
RESEARCH ARTICLE

Selection of meadow fescue for persistence under frequent defoliation

Author information +
History +
PDF

Abstract

Background: Meadow fescue (Schedonorus pratensis (Huds.) P. Beauv.) is a reemerging pasture grass for temperate regions of North America. One disadvantage of this species is its lack of tolerance to frequent defoliation at low residual sward heights. This experiment was designed to conduct one cycle of selection and evaluation for persistence under frequent defoliation.

Methods: The experiment included four locations with intensive grazing: two on silt loam soils and two on loamy sand soils. A fifth location was managed with frequent mowing to a 5-cm residual sward height, approximately 12-15 mowings per year. One cycle of selection was conducted with a population size of 1000 plants and 20 plants were selected for survivorship and vigor. Seed of all selected populations was evaluated at all five selection locations.

Results: Gains were made in all eight populations, both due to increases in endophyte infection frequency and genetic gains associated with improved host genotypes. Selection was successful on both silt loam and loamy sand soils, but none of those gains were realized on the alternate soil type. Selection was successful at two of the four grazing farms, the two located on silt loam soils, but these gains were not realized on the farms with loamy sand soils or under the frequent mowing method of defoliation.

Conclusions: Selection for tolerance to intensive grazing should be conducted under grazing conditions and selection for adaptation to both sandy and silt loam soils will require a more complex and imaginative selection scheme.

Keywords

endophyte / grazing / meadow fescue / mowing / Schedonorus pratensis (Huds.) P. Beauv / soil type / sward height

Cite this article

Download citation ▾
Michael D. Casler. Selection of meadow fescue for persistence under frequent defoliation. Grassland Research, 2025, 4(2): 131-139 DOI:10.1002/glr2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acuña, T. L. B., & Wade, L. J. (2013). Use of genotype × environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils. Annals of Botany, 112, 359-368. https://doi.org/10.1093/aob/mcs251

[2]

Annicchiarico, P., Pecetti, L., Abdelguerfi, A., Bouzerzour, H., Kallida, R., Porqueddu, C., Simões, N. M., & Volaire, F. (2013). Optimal forage grass germplasm for drought-prone Mediterranean environments. Field Crops Research, 148, 9-14. https://doi.org/10.1016/j.fcr.2013.03.024

[3]

Berg, C. C., Webster, G. T., & Jauhar, P. P. (1979). Cytogenetics and genetics. In R. C. Buckner & L. P. Bush, Tall fescue (pp. 93-110). American Society of Agronomy. https://doi.org/10.2134/agronmonogr20.c6

[4]

Brink, G. E., Beth Hall, M., Mertens, D. R., & Casler, M. D. (2008). Grass yield and quality affect potential stocking rate and milk production. Forage and Grazinglands, 6(1), 1-9. https://doi.org/10.1094/FG-2008-0313-01-RS

[5]

Brink, G. E., Casler, M. D., & Martin, N. P. (2010). Meadow fescue, tall fescue, and orchardgrass response to defoliation management. Agronomy Journal, 102, 667-674. https://doi.org/10.2134/agronj2009.0376

[6]

Buckner, R. C., Powell, J. B., & Frakes, R. V. (1979). Historical development. In R. C. Buckner & L. P. Bush Eds., Tall fescue (pp. 1-8). American Society of Agronomy Monograph. https://doi.org/10.2134/agronmonogr20.c1.

[7]

Buss, G. R., Lutz, J. A., & Hawkins, G. W. (1975). Effect of soil pH and plant genotype on element concentration and uptake by alfalfa. Crop Science, 15(5), 614-617. https://doi.org/10.2135/cropsci1975.0011183X001500050003x

[8]

Casler, M. D., Albrecht, K. A., Lehmkuhler, J., Brink, G. E., & Combs, D. S. (2008). Forage fescues in the northern USA. University of Wisconsin, Center for Integrated Agricultural Systems. https://cias.wisc.edu/wp-content/uploads/sites/194/2008/10/fescuefinalweb1.pdf

[9]

Casler, M. D., Brink, G. E., & Cherney, J. H. (2017). Registration of ‘Azov’ meadow fescue. Journal of Plant Registrations, 11(1), 9-14. https://doi.org/10.3198/jpr2016.04.0020crc

[10]

Casler, M. D., Brink, G. E., Cherney, J. H., van Santen, E., Humphreys, M. W., Yamada, T., Tamura, K., Ellison, N. W., & Opitz, C. (2015). Registration of ‘hidden valley’ meadow fescue. Journal of Plant Registrations, 9(3), 294-298. https://doi.org/10.3198/jpr2015.03.0011crc

[11]

Casler, M. D., & Kallenbach, R. L. (2007). Cool-season grasses for humid areas. In R. F. Barnes, C. J. Nelson, K. J. Moore, & M. Collins (Eds.), Forages: The science of grassland agriculture (Vol. II, pp. 211-220). Blackwell Publication. https://doi.org/10.1002/9781119436669.ch16

[12]

Casler, M. D., Undersander, D. J., Fredericks, C., Combs, D. K., & Reed, J. D. (1998). An on-farm test of perennial forage grass varieties under management intensive grazing. Journal of Production Agriculture, 11(1), 92-99. https://doi.org/10.2134/jpa1998.0092

[13]

Casler, M. D., & Waldron, B. L. (2023). Endophytic fungal infection of meadow fescue in the driftless area of the upper Mississippi River valley: Impacts on agronomic fitness. Grasses, 2, 263-275. https://doi.org/10.3390/grasses2040019

[14]

Christensen, S., & Jensen, S. M. (2023). Unravelling the complexities of genotype-soil-management interaction for precision agriculture. Agronomy, 13, 2727. https://doi.org/10.3390/agronomy13112727

[15]

Duncan, D. S., Krohn, A. L., Jackson, R. D., & Casler, M. D. (2015). Conservation implications of the introduction history of meadow fescue (Festuca pratensis Huds.) to the driftless area of the upper Mississippi valley, USA. Plant Ecology & Diversity, 8, 91-99. https://doi.org/10.1080/17550874.2013.851294

[16]

Erel, R., Bérard, A., Capowiez, L., Doussan, C., Arnal, D., Souche, G., Gavaland, A., Fritz, C., Visser, E. J. W., Salvi, S., Le Marié, C., Hund, A., & Hinsinger, P. (2017). Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant and Soil, 412, 115-132. https://doi.org/10.1007/s11104-016-3127-3

[17]

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics ( 4th ed.). Prentice-Hall.

[18]

Falkner, L. K., & Casler, M. D. (2000). Genetic shifts in smooth bromegrass under grazing: Changes in nutritional value and preference for surviving vs. original genotypes. Grass and Forage Science, 55(4), 351-360. https://doi.org/10.1046/j.1365-2494.2000.00238.x

[19]

George, T., Hawes, C., Newton, A., McKenzie, B., Hallett, P., & Valentine, T. (2014). Field phenotyping and long-term platforms to characterise how crop genotypes interact with soil processes and the environment. Agronomy, 4(2), 242-278. https://doi.org/10.3390/agronomy4020242

[20]

Hiatt, E. E., Hill, N. S., Bouton, J. H., & Stuedemann, J. A. (1999). Tall fescue endophyte detection: Commercial immunoblot test kit compared with microscopic analysis. Crop Science, 39(3), 796-799. https://doi.org/10.2135/cropsci1999.0011183X003900030030x

[21]

Koutsos, T., Koutsika-Sotiriou, M., & Fasoulas, A. C. (2021). The impact of genotype × soil texture interaction on the efficiency of selection for yield in maize (Zea mays L.). Euphytica, 61, 61-65. https://doi.org/10.1007/BF00035547

[22]

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models ( 2nd ed.). SAS Institute Inc.

[23]

Malinowski, D., Leuchtmann, A., Schmidt, D., & Nösberger, J. (1997a). Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agronomy Journal, 89(5), 833-839. https://doi.org/10.2134/agronj1997.00021962008900050019x

[24]

Malinowski, D., Leuchtmann, A., Schmidt, D., & Nösberger, J. (1997b). Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agronomy Journal, 89(4), 673-678. https://doi.org/10.2134/agronj1997.00021962008900040021x

[25]

Matches, A. G. (1992). Plant response to grazing: A review. Journal of Production Agriculture, 5(1), 1-7. https://doi.org/10.2134/jpa1992.0001

[26]

Reza Sabzalian, M., & Mirlohi, A. (2010). Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. Journal of Plant Nutrition and Soil Science, 173(6), 952-957. https://doi.org/10.1002/jpln.200900345

[27]

Sabzalian, M. R., Hatami, B., & Mirlohi, A. (2004). Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte-infected tall and meadow fescues. Entomologia Experimentalis et Applicata, 113(3), 205-209. https://doi.org/10.1111/j.0013-8703.2004.00227.x

[28]

Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Kumar, M., Singla, S., Shikha, K., & Madankar, K. (2021). Genotype × environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Research, 270, 108224. https://doi.org/10.1016/j.fcr.2021.108224

[29]

Stonoha-Arther, C., Panke-Buisse, K., Duff, A. J., Molodchenko, A., & Casler, M. D. (2024). Rhizosphere microbial community structure in high-producing, low-input switchgrass families. PLoS One, 19(10), e0308753. https://doi.org/10.1371/journal.pone.0308753

[30]

Takai, T., Sanada, Y., & Yamada, T. (2010). Influence of the fungal endophyte Neotyphodium uncinatum on the persistency and competitive ability of meadow fescue (Festuca pratensis Huds.). Grassland Science, 56(2), 59-64. https://doi.org/10.1111/j.1744-697X.2010.00175.x

[31]

USDA-NRCS. (2024). Web soil survey. https://websoilsurvey.nrcs.usda.gov/app/

[32]

Waldron, B. L., Jensen, K. B., Peel, M. D., & Picasso, V. D. (2021). Breeding for resilience to water deficit and its predicted effect on forage mass in tall fescue. Agronomy, 11, 2094. https://doi.org/10.3390/agronomy11112094

[33]

Wang, G., Xu, Y., Jin, J., Liu, J., Zhang, Q., & Liu, X. (2009). Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant and Soil, 317, 135-144. https://doi.org/10.1007/s11104-008-9794-y

[34]

Xu, W. W., & Sleper, D. A. (1994). Phylogeny of tall fescue and related species using RFLPs. Theoretical and Applied Genetics, 88, 685-690. https://doi.org/10.1007/BF01253971

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/