The application of near-infrared spectroscopy to predict composition, gross energy yield, and methane production of natural forages on the Qinghai–Tibet Plateau

Runze Wang , Huakun Zhou , Yayu Huang , Allan Degen , Xueyan Du , Muhammad Irfan Malik , Rongzhen Zhong , Binqiang Bai , Lizhuang Hao

Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 7 -14.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 7 -14. DOI: 10.1002/glr2.70002
RESEARCH ARTICLE

The application of near-infrared spectroscopy to predict composition, gross energy yield, and methane production of natural forages on the Qinghai–Tibet Plateau

Author information +
History +
PDF

Abstract

Background: Yak (Poephagus grunniens) production on the Qinghai–Tibet Plateau is influenced heavily by the quality of the natural forage, which can vary significantly in both quality and quantity. Therefore, timely and accurate monitoring of forage variables is essential for optimizing livestock production in this region.

Methods: This study investigated the use of near-infrared spectroscopy (NIRS) as a tool for estimating the composition and quality of natural forage. A total of 301 natural forage samples were collected, and their spectral data were acquired using NIRS. Conventional methods were used to measure the forage composition, and predictive models were developed based on the spectral data.

Results: Our findings indicate that NIRS can accurately predict the contents of crude protein, acid detergent fiber, and neutral detergent fiber. However, it demonstrated less accuracy in predicting dry matter digestibility, gross energy yield, and methane production.

Conclusions: The application of NIRS for assessing the nutritional composition of forages on the Qinghai–Tibet Plateau is a key advancement for the livestock industry. Understanding forage nutrition enables informed feeding strategies and improvement of livestock production. Future research should refine predictive models to ensure sustainable forage management and enhance livestock productivity in this unique ecological environment.

Keywords

chemometrics / near-infrared spectroscopy / Qinghai–Tibet Plateau / ruminant nutrition

Cite this article

Download citation ▾
Runze Wang, Huakun Zhou, Yayu Huang, Allan Degen, Xueyan Du, Muhammad Irfan Malik, Rongzhen Zhong, Binqiang Bai, Lizhuang Hao. The application of near-infrared spectroscopy to predict composition, gross energy yield, and methane production of natural forages on the Qinghai–Tibet Plateau. Grassland Research, 2025, 4(1): 7-14 DOI:10.1002/glr2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alomar, D., Fuchslocher, R., Cuevas, J., Mardones, R., & Cuevas, E. (2009). Prediction of the composition of fresh pastures by near infrared reflectance or interactance-reflectance spectroscopy. Chilean Journal of Agricultural Research, 69(2), 198-206. https://doi.org/10.4067/S0718-58392009000200009

[2]

Andrés, S., Calleja, A., López, S., González, J. S., Rodríguez, P. L., & Giráldez, F. J. (2005). Prediction of gas production kinetic parameters of forages by chemical composition and near infrared reflectance spectroscopy. Animal Feed Science and Technology, 123–124, 487-499. https://doi.org/10.1016/j.anifeedsci.2005.04.043

[3]

Baath, G. S., Baath, H. K., Gowda, P. H., Thomas, J. P., Northup, B. K., Rao, S. C., & Singh, H. (2020). Predicting forage quality of warm-season legumes by near infrared spectroscopy coupled with machine learning techniques. Sensors, 20(3), 867. https://doi.org/10.3390/s20030867

[4]

Bao, Z., Li, Y., Yang, J., Ran, Y., & Holly (2023). Rapid quantitative analysis of soluble sugar in anaerobic fermentation by near infrared spectroscopy. Chemical Research and Application, 35(2), 260-266. https://doi.org/10.3969/j.issn.1004-1656.2023.02.004

[5]

Catunda, K. L., Churchill, A. C., Power, S. A., & Moore, B. D. (2022). Near infrared spectroscopy calibration strategies to predict multiple nutritional parameters of pasture species from different functional groups. Journal of Near Infrared Spectroscopy, 30(5), 254-263. https://doi.org/10.1101/2021.07.31.454175

[6]

Coates, D. B., & Dixon, R. M. (2007). Faecal near infrared reflectance spectroscopy (F.NIRS) measurements of non-grass proportions in the diet of cattle grazing tropical rangelands. The Rangeland Journal, 29(1), 51-63. https://doi.org/10.1071/rj07011

[7]

Cunniff, P., & Washington, D. (1997). Official methods of analysis of AOAC International. Journal of AOAC International, 80(6), 127A. https://doi.org/10.1093/9780197610145.001.0001

[8]

Fanfan, Z., Xiaoxia, W., Hongwei, D., Lei, Y., & Wenju, Z. (2019). Near-infrared spectroscopy analysis of main mixed forage nutrition indexes in natural grassland of Shaltao Mountain, Xinjiang. Acta Agrestia Sinica, 27(03), 661-667. https://doi.org/10.11733/j.issn.1007-0435.2019.03.019

[9]

Fearn, T. (2002). Assessing calibrations: sep, rpd, rer and r 2. NIR News, 13(6), 12-13. https://doi.org/10.1255/nirn.689

[10]

Fekadu, D., Bediye, S., Kehaliw, A., Daba, T., Kitaw, G., & Assefa, G. (2010). Near Infrared Reflectance Spectroscopy (NIRS) for determination of chemical entities of natural pasture from Ethiopia. Agriculture and Biology Journal of North America, 1(5), 919-922. https://doi.org/10.5251/abjna.2010.1.5.919.922

[11]

Flores, K., Sánchez, M.-T., Pérez-Marín, D., Guerrero, J.-E., & Garrido-Varo, A. (2009). Feasibility in NIRS instruments for predicting internal quality in intact tomato. Journal of Food Engineering, 91(2), 311-318. https://doi.org/10.1016/j.jfoodeng.2008.09.013

[12]

Fuquan, H., Zhaotong, C., Qi, L., Xin, C., Huo, L., Liang, Z., & Xinquan, Z. (2020). Spatial and temporal distribution of pasture nutrients in the alpine grassland of Sanjiangyuan, China. Ecology Letters, 40(18), 6304-6313. https://doi.org/10.5846/stxb201911092364

[13]

Kaur, S., Singh, N., Sharma, P., Ananthan, R., Singh, M., Gayacharan, A. K., Singh, A. K., & Bhardwaj, R. (2024). Optimizing protein content prediction in rice bean (Vigna umbellata L.) by integrating near-infrared reflectance spectroscopy, MPLS, deep learning, and key wavelengths selection algorithms. Journal of Food Composition and Analysis, 135, 106655. https://doi.org/10.1016/j.jfca.2024.106655

[14]

Liu, Y., Weckworth, B., Li, J., Xiao, L., Zhao, X., & Lu, Z. (2016). China: The Tibetan Plateau, sanjiangyuan region. In T. McCarthy & D. Mallon (Eds.), Snow leopards (pp. 513-521). Elsevier. https://doi.org/10.1016/B978-0-12-809970-4.00025-3

[15]

Lobos, I., Gou, P., Hube, S., Saldaña, R., & Alfaro, M. (2013). Evaluation of potential NIRS to predict pastures nutritive value. Journal of Soil science and Plant Nutrition, 13(2), 463-468. https://doi.org/10.4067/S0718-95162013005000036

[16]

Maduro Dias, C., Nunes, H., & Borba, A. (2023). Near-infrared spectroscopy integration in the regular monitorization of pasture nutritional properties and gas production. Agriculture, 13(7), 1398. https://doi.org/10.3390/agriculture13071398

[17]

Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (2009). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. https://doi.org/10.1017/S0021859600086305

[18]

Molle, G., Decandia, M., Scanu, G., Serra, M. G., Contini, S., Giovanetti, V., Acciaro, M., Cabiddu, A., Caredda, M., Lunesu, M. F., Atzori, A. S., Cannas, A., & Landau, S. Y. (2023). Fecal NIRS to estimate intake and diet composition in Sarda dairy ewes fed mixed diets or part-time grazing forage crops. Small Ruminant Research, 227, 107084. https://doi.org/10.1016/j.smallrumres.2023.107084

[19]

Murphy, D. J., O' Brien, B., O' Donovan, M., Condon, T., & Murphy, M. D. (2022). A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Information Processing in Agriculture, 9(2), 243-253. https://doi.org/10.1016/j.inpa.2021.04.012

[20]

Norman, H. C., Hulm, E., Humphries, A. W., Hughes, S. J., & Vercoe, P. E. (2020). Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Animal Production Science, 60(8), 1111-1122. https://doi.org/10.1071/An19310

[21]

Pang, K., Dai, D., Yang, Y., Wang, X., Liu, S., Huang, W., Xue, B., Chai, S., & Wang, S. (2022). Effects of high concentrate rations on ruminal fermentation and microbiota of yaks. Frontiers in Microbiology, 13, 957152. https://doi.org/10.3389/fmicb.2022.957152

[22]

Parrini, S., Acciaioli, A., Crovetti, A., & Bozzi, R. (2017). Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal of Animal Science, 17(1), 87-91. https://doi.org/10.1080/1828051x.2017.1345659

[23]

Parrini, S., Acciaioli, A., Franci, O., Pugliese, C., & Bozzi, R. (2019). Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. Journal of Applied Animal Research, 47(1), 514-520. https://doi.org/10.1080/09712119.2019.1675669

[24]

Parrini, S., Staglianò, N., Bozzi, R., & Argenti, G. (2021). Can grassland chemical quality be quantified using transform near-Infrared spectroscopy? Animals, 12(1), 86. https://doi.org/10.3390/ani12010086

[25]

Serrano, J., Shahidian, S., Carapau, Â., & Rato, A. E. (2021). Near-infrared spectroscopy (NIRS) and optical sensors for estimating protein and fiber in dryland Mediterranean pastures. AgriEngineering, 3(1), 73-91. https://doi.org/10.3390/agriengineering3010005

[26]

Serrano, J., Shahidian, S., Marques da Silva, J., Paixão, L., Carreira, E., Carmona-Cabezas, R., Nogales-Bueno, J., & Rato, A. E. (2020). Evaluation of near infrared spectroscopy (NIRS) and remote sensing (RS) for estimating pasture quality in Mediterranean Montado ecosystem. Applied Sciences, 10(13), 4463. https://doi.org/10.3390/app10134463

[27]

Shah, A. M., Bano, I., Qazi, I. H., Matra, M., & Wanapat, M. (2023). “The Yak”—A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Frontiers in Veterinary Science, 10, 1086985. https://doi.org/10.3389/fvets.2023.1086985

[28]

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

[29]

Tan, L., Guo, G., & Li, S. (2021). The Sanjiangyuan Nature Reserve is partially effective in mitigating human pressures. Land, 11(1), 43. https://doi.org/10.3390/land11010043

[30]

Tilley, J. M. A., & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

[31]

Waghorn, G., & Clark, D. (2004). Feeding value of pastures for ruminants. New Zealand Veterinary Journal, 52(6), 320-331. https://doi.org/10.1080/00480169.2004.36448

[32]

Wang, L., Huan, K., Liu, X., Yue, D., Han, F., & Zhang, W. (2022). Study on the full process analysis model of near-infrared spectroscopy based on convolutional neural network. Analytical Chemistry, 50(12), 1918-1926. https://doi.org/10.19756/j.issn.0253-3820.221269

[33]

Wang, W., Guo, W., Jiao, J., Ungerfeld, E. M., Jing, X., Huang, X., & Long, R. (2024). Effects of ratios of yak to cattle inocula on methane production and fiber digestion in rumen in vitro cultures. Journal of Integrative Agriculture. In press. https://doi.org/10.1016/j.jia.2024.01.026

[34]

Williams, P. (2001). Implementation of near-infrared technology. In P. C. Williams & K. Norris (Eds.), Near-infrared technology in the agricultural and food industries ( 2nd ed., pp. 145-169). American Association of Cereal Chemists, St. Paul. https://doi.org/10.1002/food.19880320825

[35]

Xin, Y. (2013). Analysis of pasture energy value of natural grassland in Qinghai Province. Qinghai Grass, 22(02), 39-46. https://doi.org/10.3969/j.issn.1008-1445.2013.02.012

[36]

Yakubu, H. G., Worku, A., Tóthi, R., Tóth, T., Orosz, S., Fébel, H., Kacsala, L., Húth, B., Hoffmann, R., & Bazar, G. (2023). Near-infrared spectroscopy for rapid evaluation of winter cereals and Italian ryegrass forage mixtures. Animal Science Journal, 94(1), e13823. https://doi.org/10.1111/asj.13823

[37]

Yang, F., Shao, Q., Guo, X., Tang, Y., Li, Y., Wang, D., Wang, Y., & Fan, J. (2018). Effect of large wild herbivore populations on the forage-livestock balance in the source region of the Yellow River. Sustainability, 10(2), 340. https://doi.org/10.3390/su10020340

[38]

Yang, Z., Xiong, W., Xu, Y., Jiang, L., Zhu, E., Zhan, W., He, Y., Zhu, D., Zhu, Q., Peng, C., & Chen, H. (2016). Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring and Assessment, 188, 678. https://doi.org/10.1007/s10661-016-5663-y

[39]

Yao, X., Wu, J., & Gong, X. (2019). Precipitation and seasonality affect grazing impacts on herbage nutritive values in alpine meadows on the Qinghai–Tibet Plateau. Journal of Plant Ecology, 12(6), 993-1008. https://doi.org/10.1093/jpe/rtz027

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/