Perennial summer pasture options in Tablelands environments where drought and soil acidity jeopardise pasture persistence

Richard A. Culvenor , Rebecca S. Stutz , Richard C. Hayes

Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 15 -30.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 15 -30. DOI: 10.1002/glr2.70001
RESEARCH ARTICLE

Perennial summer pasture options in Tablelands environments where drought and soil acidity jeopardise pasture persistence

Author information +
History +
PDF

Abstract

Background: The persistence of summer-active perennial species is critical for pasture-fed meat production in the temperate, uniform rainfall environment of south-eastern Australia.

Methods: To investigate the limitations of important pasture species under contrasting levels of drought and soil acidity stress, we monitored replicated field plots for persistence and productivity at three sites on the Southern Tablelands over 2–3 years.

Results: All sites experienced a period of severe drought. At one site, persistence was ranked lucerne > phalaris > Porto cocksfoot > Savvy cocksfoot, tall fescue, chicory > plantain, red clover. Bromes survived via recruitment. Lucerne and chicory were the most productive immediately post-drought in summer and phalaris and chicory in autumn. Cocksfoot outyielded tall fescue. At a higher-elevation site, less drought-tolerant species were more persistent and productive. At a site with deep soil acidity, lucerne failed to persist; chicory performed better but declined with overgrazing during drought. Tall fescue declined severely during drought.

Conclusions: Lucerne remains the most productive summer option if soil conditions allow its growth, with chicory a potential replacement on acidic soils. Good productivity combined with acid soil tolerance favours cocksfoot over tall fescue. The ability to survive occasional severe drought is an important factor in species choice.

Keywords

chicory / cocksfoot / drought / lucerne / meat production / perennial pasture / phalaris / soil acidity

Cite this article

Download citation ▾
Richard A. Culvenor, Rebecca S. Stutz, Richard C. Hayes. Perennial summer pasture options in Tablelands environments where drought and soil acidity jeopardise pasture persistence. Grassland Research, 2025, 4(1): 15-30 DOI:10.1002/glr2.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Axelsen, A., & Morley, F. (1968). Evaluation of eight pastures by animal production. Proceedings of the Australian Society for Animal Production, 7, 92-98.

[2]

Chapman, D. F., McCaskill, M. R., Quigley, P. E., Thompson, A. N., Graham, J. F., Borg, D., Lamb, J., Kearney, G., Saul, G. R., & Clark, S. G. (2003). Effects of grazing method and fertiliser inputs on the productivity andsustainability of phalaris-based pastures in Western Victoria. Australian Journal of Experimental Agriculture, 43, 785-798. https://doi.org/10.1071/EA02198

[3]

Clark, S. G., Ward, G. N., Kearney, G. A., Lawson, A. R., McCaskill, M. R., O'Brien, B. J., Raeside, M. C., & Behrendt, R. (2013). Can summer-active perennial species improve pasture nutritive value and sward stability. Crop & Pasture Science, 64(6), 600-614. https://doi.org/10.1071/CP13004

[4]

Clements, B., Ayres, L., Langford, C., McGarva, L., Simpson, P., Hennessy, G., Keys, M., Upjohn, B., & Leech, F. (2003). The Grazier's Guide to Pastures. New South Wales Agriculture. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/87270/graziers-guide-pastures-full-version.pdf

[5]

Crews, T. E., Blesh, J., Culman, S. W., Hayes, R. C., Jensen, E. S., Mack, M. C., Peoples, M. B., & Schipanski, M. E. (2016). Going where no grains have gone before: From early to mid-succession. Agriculture, Ecosystems & Environment, 223, 223-238. https://doi.org/10.1016/j.agee.2016.03.012

[6]

Culvenor, R. A., Clark, S. G., Harris, C. A., Hayes, R. C., Li, G. D., Nie, Z. N., Norton, M. R., & Partington, D. L. (2016). Field evaluation of cocksfoot, tall fescue and phalaris for dry marginal environments of south-eastern Australia. 2. Persistence. Journal of Agronomy and Crop Science, 202, 355-371. https://doi.org/10.1111/jac.12141

[7]

Culvenor, R. A., Wood, J. T., Avery, A. L., Dempsey, W., McDonald, S. E., Ronnfeldt, G., & Veness, P. E. (2004). Multi-site evaluation on acid soils of a Phalaris aquatica × P. arundinacea × P. aquatica backcross population bred for acid soil tolerance. Australian Journal of Agricultural Research, 55, 681-692. https://doi.org/10.1071/AR03262

[8]

Dear, B. S., & Cocks, P. S. (1997). Effect of perennial pasture species on surface soil moisture and early growth and survival of subterranean clover (Trifolium subterraneum L.) seedlings. Australian Journal of Agricultural Research, 48, 683-693. https://doi.org/10.1071/A96121

[9]

Dear, B. S., Cocks, P. S., Collins, D. P., & Wolfe, E. C. (1998). Established perennial grasses reduce the growth of emerging subterranean clover seedlings through competition for water, light and nutrients. Australian Journal of Agricultural Research, 49, 41-51. https://doi.org/10.1071/A97062

[10]

Donnelly, J., McKinney, G., & Morley, F. (1985). The productivity of breeding ewes grazing on lucerne or grass and clover pastures on the tablelands of Southern Australia. 4. Lamb Growth. Australian Journal of Agricultural Research, 36(3), 469-481. https://doi.org/10.1071/AR9850469

[11]

Donnelly, J., Morley, F., & McKinney, G. (1983). The productivity of breeding ewes grazing on lucerne or grass and clover pastures on the tablelands of Southern Australia. II. Wool production and ewe weight. Australian Journal of Agricultural Research, 34, 537-548. https://doi.org/10.1071/AR9830537

[12]

Duchene, O., Vian, J.-F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems & Environment, 240, 148-161. https://doi.org/10.1016/j.agee.2017.02.019

[13]

Flemón, K., & Siman, A. (1970). Goulburn lucerne failures linked with induced manganese toxicity. Agricultural Gazette of New South Wales, 81, 662-663.

[14]

Gilmour, A. R., Cullis, B. R., Verbyla, A. P., & Verbyla, A. P. (1997). Accounting for natural and extraneous variation in the analysis of field experiments. Journal of Agricultural, Biological, and Environmental Statistics, 2, 269-293. https://doi.org/10.2307/1400446

[15]

Hackney, B., & Dear, B. (2007). Cocksfoot [Fact sheet]. New South Wales Department of Primary Industries. https://www.evergraze.com.au/wp-content/uploads/2013/06/cocksfoot.pdf

[16]

Hayes, R. C., Ara, I., Badgery, W. B., Culvenor, R. A., Haling, R. E., Harris, C. A., Li, G. D., Norton, M. R., Orgill, S. E., Penrose, B., & Smith, R. W. (2019). Prospects for improving perennial legume persistence in mixed grazed pastures of south eastern Australia, with particular reference to White clover. Crop & Pasture Science, 70, 1141-1162. https://doi.org/10.1071/CP19063

[17]

Hayes, R. C., Conyers, M. L., Li, G. D., Poile, G. J., Price, A., McVittie, B. J., Gardner, M. J., Sandral, G. A., & McCormick, J. I. (2012). Spatial and temporal variation in soil Mn2+ concentrations and the impact of manganese toxicity on lucerne and subterranean clover seedlings. Crop & Pasture Science, 63, 875-885. https://doi.org/10.1071/CP12138

[18]

Hayes, R. C., Dear, B. S., Li, G. D., Virgona, J. M., Conyers, M. K., Hackney, B. F., & Tidd, J. (2010). Perennial pastures for recharge control in temperate drought-prone environments. Part 1: productivity, persistence and herbage quality of key species. New Zealand Journal of Agricultural Research, 53(4), 283-302. https://doi.org/10.1080/00288233.2010.515937

[19]

Hayes, R. C., Dear, B. S., Orchard, B. A., Peoples, M. B., & Eberbach, P. L. (2008). Response of subterranean clover, balansa clover, and gland clover to lime when grown in mixtures on an acid soil. Australian Journal of Agricultural Research, 59, 824-835. https://doi.org/10.1071/AR07383

[20]

Hayes, R. C., Li, G. D., Conyers, M. K., Virgona, J. M., & Dear, B. S. (2016). Lime increases productivity and the capacity of lucerne (Medicago sativa L.) and phalaris (Phalaris aquatica L.) to utilise stored soil water on an acidic soil in south-eastern Australia. Plant and Soil, 400(1), 29-43. https://doi.org/10.1007/s11104-015-2706-z

[21]

Hayes, R. C., Li, G. D., & Culvenor, R. A. (2015). Changed recommendations for the use of phalaris on acid soils. In T. Acuña, C. Moeller, D. Parsons, & M. Harrison (Eds.), Building productive, diverse and sustainable landscapes. Proceedings of the 17th Australian Society of Agronomy Conference (pp. 1-4). Australian Society of Agronomy. http://agronomyaustraliaproceedings.org/images/sampledata/2015_Conference/pdf/agronomy2015final00326.pdf

[22]

Hayes, R. C., Li, G. D., Dear, B. S., Conyers, M. K., & Virgona, J. M. (2010). Phalaris and lime – improving productivity on an acidic soil in a drought-prone ‘high-rainfall’ environment. In H. Dove & R. A. Culvenor (Eds.), Food security from sustainable agriculture. Proceedings of 15th Agronomy Conference (pp. 1-4). Australian Society of Agronomy. http://www.agronomyaustraliaproceedings.org/images/sampledata/2010/crop-production/subsoil/7053_hayesrc.pdf

[23]

Hayes, R. C., Li, G. D., Dear, B. S., Conyers, M. K., Virgona, J. M., & Tidd, J. (2010). Perennial pastures for recharge control in temperate drought-prone environments. Part 2: Soil drying capacity of key species. New Zealand Journal of Agricultural Research, 53(4), 327-345. https://doi.org/10.1080/00288233.2010.525784

[24]

Hayes, R. C., Li, G. D., Smith, R. W., Peoples, M. B., Rawnsley, R. P., Newell, M. T., & Pembleton, K. G. (2024). Prospects for improving productivity and composition of mixed swards in semi-arid environments by separating species in drill rows—A review. Agriculture, Ecosystems & Environment, 373, 109131. https://doi.org/10.1016/j.agee.2024.109131

[25]

Hayes, R. C., Newell, M. T., Li, G. D., Haling, R. E., Harris, C. A., Culvenor, R. A., Badgery, W. B., Munday, N., Price, A., Stutz, R. S., & Simpson, R. S. (2023). Legume persistence for grasslands in tablelands environments of south-eastern Australia. Crop & Pasture Science, 74(7–8), 712-738. https://doi.org/10.1071/CP22277

[26]

Isbell, R. F. (1996). The Australian soil classification. CSIRO Publishing.

[27]

Jumrani, K., & Bhatia, V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiology and Molecular Biology of Plants, 24, 37-50. https://doi.org/10.1007/s12298-017-0480-5

[28]

Lattimore, M. A., & McCormick, L. (2012). Pasture varieties used in New South Wales 2012–13. New South Wales Department of Primary Industries and the Grassland Society of New South Wales Inc. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/347485/pasture-varieties.pdf

[29]

Li, G. D., Hayes, R. C., McCormick, J. I., Gardner, M. J., Sandral, G. A., & Dear, B. S. (2014). Time of sowing and the presence of a cover-crop determine the productivity and persistence of perennial pastures in mixed farming systems. Crop & Pasture Science, 65(10), 988-1001. https://doi.org/10.1071/CP13447

[30]

Li, G. D., Lodge, G. M., Moore, G. A., Craig, A. D., Dear, B. S., Boschma, S. P., Albertsen, T. O., Miller, S. M., Harden, S., Hayes, R. C., Hughes, S. J., Snowball, R., Smith, A. B., & Cullis, B. C. (2008). Evaluation of perennial pasture legumes and herbs to identify species with high herbage production and persistence in mixed farming zones in Southern Australia. Australian Journal of Experimental Agriculture, 48(4), 449-466. https://doi.org/10.1071/EA07108

[31]

Mannetje, L., & Haydock, K. P. (1963). The dry-weight-rank method for the botanical analysis of pasture. Grass and Forage Science, 18, 268-275. https://doi.org/10.1111/j.1365-2494.1963.tb00362.x

[32]

McVittie, B. J., Hayes, R. C., Li, G. D., Sandral, G. A., Gardner, M. J., McCormick, J. I., Lowrie, R., Tidd, J., & Poile, G. J. (2012). Screening potential new perennial pasture legumes for tolerance to aluminium and manganese toxicities. In C. Harris (Ed.), Proceedings of the Australian legume symposium (pp. 55-57). Australian Grasslands Association.

[33]

Moore, R. M. (1975). South-eastern temperate woodlands and grasslands. In R. M. Moore (Ed.), Australian grasslands (pp. 169-190). Australian National University Press.

[34]

Norton, M. R., Li, G. D., Xu, B., Price, A., Tyndall, P., & Hayes, R. C. (2021). Differences in dehydration tolerance affect survival of white clover (Trifolium repens) and lucerne (Medicago sativa) during a drying cycle. Crop & Pasture Science, 72(9), 723-730. https://doi.org/10.1071/CP20300

[35]

Pattinson, R., Wilcox, C., Williams, S., & Curtis, K. (2015). NSW wool industry and future opportunities (Supporting Paper 2: Changes in the demographics of the NSW sheep flock). New South Wales Department of Primary Industries. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0011/543548/Paper-2-demographics-with-ageing-appendix.pdf

[36]

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007

[37]

Perera, R. S., Cullen, B. R., & Eckard, R. J. (2019). Growth and physiological responses of temperate pasture species to consecutive heat and drought stress. Plants, 8, 227. https://doi.org/10.3390/plants8070227

[38]

Picasso, V. D., Brummer, E. C., Liebman, M., Dixon, P. M., & Wilsey, B. J. (2008). Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Science, 48(1), 331-342. https://doi.org/10.2135/cropsci2007.04.0225

[39]

Raeside, M. C., Friend, M. A., Behrendt, R., Lawson, A. R., & Clark, S. G. (2012). Evaluation of tall fescue (Festuca arundinacea) as a forage for sheep in the temperate high-rainfall zone of south-eastern Australia. Grass & Forage Science, 67, 411-425. https://doi.org/10.1111/j.1365-2494.2012.00859.x

[40]

Rowe, J. B. (2010). The Australian sheep industry—Undergoing transformation. Animal Production Science, 50, 991-997. https://doi.org/10.1071/AN10142

[41]

Song, Y., Hayes, R. C., Sandral, G. A., McVittie, B. J., Price, A., Poile, G. J., Zheng, W., & Li, G. D. (2017). Relative tolerance to aluminium and manganese toxicities of phalaris, cocksfoot, and tall fescue genotypes developed for low rainfall environments. Journal of Plant Nutrition, 40(11), 1526-1537. https://doi.org/10.1080/01904167.2016.1237649

[42]

Stutz, R. S., De Faveri, J., & Culvenor, R. A. (2023). Legume options for summer-active pastures in a temperate rainfall environment of south-eastern Australia. Crop & Pasture Science, 74, 739-755. https://doi.org/10.1071/CP22406

[43]

Stutz, R. S., De Faveri, J., & Culvenor, R. A. (2024). Perennial grass and herb options to extend summer–autumn forage in a drought-prone temperate environment. Grassland Research, 3(2), 199-216. https://doi.org/10.1002/glr2.12083

[44]

Warn, L., Webb Ware, J., Salmon, L., Donnelly, J., & Alcock, D. (2006). Analysis of the profitability of sheep wool and meat enterprises in southern Australia. Sheep Cooperative Research Centre, University of New England. http://www.makingmorefromsheep.com.au/Analysis_of_profitability_sheep3325.pdf?ID=159953

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/