Short-term effects of soil texture, biochar, manure, and tillage practices on warm-climate forage yields and nutrient content

Cade P. Cooper , James P. Muir , Kimberly B. Wellmann , Eunsung Kan , Lisandro J. Entio , Jeff A. Brady , Katherine Hays , Jaehak Jeong

Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 66 -78.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 66 -78. DOI: 10.1002/glr2.12113
RESEARCH ARTICLE

Short-term effects of soil texture, biochar, manure, and tillage practices on warm-climate forage yields and nutrient content

Author information +
History +
PDF

Abstract

Background: Biochar (BC) amendment to soils can affect crop yields negatively, especially during the first season following application, by binding essential nutrients; however, little data exist on its effects on warm-climate forage yields and nutritive values. We determined the effects of BC (0, 5, 10 Mg DM ha−1), dairy manure (0 and 10 Mg DM ha−1), soil type (loamy sand, sandy loam, clay loam), and tillage practices (till [incorporation of soil amendments with tillage] vs. no till [soil amendments surface application]) on the nutrient profile and dry matter yield (DMY) of Bermudagrass (Cynodon dactylon (L.) Pers.), maize (Zea mays L.), and sorghum-Sudan (Sorghum drummondii (Nees ex Steud.) Millsp. & Chase).

Methods: Bermudagrass was harvested at the boot stage, sorghum-Sudan when the canopy reached 90% light interception, and the maize 90–120 days after planting as silage. Samples were dried and analyzed for nutrients and DMY.

Results: BC and manure application were not detrimental to forage production or nutritive value to cattle in the first growing season.

Conclusions: Effects varied across tillage and soil type; thus, it is essential to consider soil texture and nutrient makeup before choosing the proper tillage and amendments. Longer study periods may produce different results since, over time, BC can act as a slow-release source of nutrients.

Keywords

biochar / Cynodon dactylon / dairy manure / nutrient uptake / soil texture / Sorghum drummondii / tillage / Zea mays

Cite this article

Download citation ▾
Cade P. Cooper, James P. Muir, Kimberly B. Wellmann, Eunsung Kan, Lisandro J. Entio, Jeff A. Brady, Katherine Hays, Jaehak Jeong. Short-term effects of soil texture, biochar, manure, and tillage practices on warm-climate forage yields and nutrient content. Grassland Research, 2025, 4(1): 66-78 DOI:10.1002/glr2.12113

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071

[2]

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 214, 836-851. https://doi.org/10.1016/j.biortech.2016.05.057

[3]

Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202-214. https://doi.org/10.1111/gcbb.12037

[4]

Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017

[5]

Blanco-Canqui, H. (2021). Does biochar improve all soil ecosystem services? GCB Bioenergy, 13, 291-304. https://doi.org/10.1111/gcbb.12783

[6]

Boone, R. D. (1990). Soil organic matter as a potential net nitrogen sink in a fertilized cornfield, South Deerfield, Massachusetts, USA. Plant and Soil, 128, 191-198. https://doi.org/10.1007/BF00011109

[7]

Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x

[8]

Cavigelli, M. A., Mirsky, S. B., Teasdale, J. R., Spargo, J. T., & Doran, J. (2013). Organic grain cropping systems to enhance ecosystem services. Renewable Agriculture and Food Systems, 28(2), 145-159. https://doi.org/10.1017/S1742170512000439

[9]

Chen, D., Xu, J., Ling, P., Fang, Z., Ren, Q., Xu, K., Jiang, L., Wang, Y., Su, S., Hu, S., & Xiang, J. (2024). Formation and evolution mechanism of persistent free radicals in biochar during biomass pyrolysis: Insights from biochar's element composition and chemical structure. Fuel, 357(C), 129910. https://doi.org/10.1016/j.fuel.2023.129910

[10]

Choi, G., Brady, J. A., Obayomi, O., Green, E., Leija, C., Sefcik, K., Gonzalez, D. A., Taggart, C. B., Muir, J. P., & Kan, E. (2024). Wood- and manure-derived biochars reduce antibiotic residues and shift antibiotic resistance genes and microbial communities in manure applied forage–soil systems. Agronomy, 14, 2100. https://doi.org/10.3390/agronomy14092100

[11]

Choi, Y.-K., Choi, T.-R., Gurav, R., Bhatia, S. K., Park, Y.-L., Kim, H.-J., Kan, E., & Yang, Y.-H. (2020). Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Science of the Total Environment, 710, 136282. https://doi.org/10.1016/j.scitotenv.2019.136282

[12]

Choi, Y. K., Jang, H. M., Kan, E., Wallace, A. R., & Sun, W. (2018). Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environmental Engineering Research, 24(3), 434-442. https://doi.org/10.4491/eer.2018.296

[13]

Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27, 261-266. https://doi.org/10.2134/jeq.1998.00472425002700020004x

[14]

Cui, X., Hao, H., He, Z., Stoffella, P. J., & Yang, X. (2016). Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation. Journal of Environmental Management, 173, 95-104. https://doi.org/10.1016/j.jenvman.2016.02.049

[15]

Dai, Z., Wang, Y., Muhammad, N., Yu, X., Xiao, K., Meng, J., Liu, X., Xu, J., & Brookes, P. C. (2014). The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH. Soil Science Society of America Journal, 78(5), 1606-1614. https://doi.org/10.2136/sssaj2013.08.0340

[16]

Ghezzehei, T. A., Sarkhot, D. V., & Berhe, A. A. (2014). Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 5, 953-962. https://doi.org/10.5194/se-5-953-2014

[17]

Gill, W., Lane, C., Neel, J., & Fisher, A. (2004). Mineral nutrition of beef cattle (pp. 1–23). The University of Tennesse Extension. https://utbeef.tennessee.edu/wp-content/uploads/sites/127/2020/11/MineralNutritionofbeefcattle.pdf

[18]

Havlin, J. L., & Soltanpour, P. N. (1980). A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis, 11, 969-980. https://doi.org/10.1080/00103628009367096

[19]

Hays, K. N., Muir, J. P., Kan, E., DeLaune, P. B., Brady, J. A., Obayomi, O., & Mitchell, A. B. (2023). Tillage, manure, and biochar short-term effects on soil characteristics in forage systems. Agronomy, 13(9), 2224. https://doi.org/10.3390/agronomy13092224

[20]

Henessey, D. W. (1980). Protein nutrition of ruminants in tropical areas of Australia. Tropical Grasslands, 14(3), 260-265.

[21]

Huang, H., Luo, L., Huang, L., Zhang, J., Gikas, P., & Zhou, Y. (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by Brassica juncea. Water, Air, & Soil Pollution, 231, 195. https://doi.org/10.1007/s11270-020-04572-4

[22]

Isaac, R. A., & Johnson, W. C. (1975). Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry. Journal of AOAC International, 58(3), 436-440. https://doi.org/10.1093/jaoac/58.3.436

[23]

Islam, A. K. M. S., Edwards, D. G., & Asher, C. J. (1980). pH optima for crop growth: Results of a flowing solution culture experiment with six species. Plant and Soil, 54(3), 339-357. https://doi.org/10.1007/BF02181830

[24]

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13, 1731-1764. https://doi.org/10.1111/gcbb.12885

[25]

Kachurina, O. M., Zhang, H., Raun, W. R., & Krenzer, E. G. (2008). Simultaneous determination of soil aluminum, ammonium- and nitrate-nitrogen using 1 M potassium chloride extraction. Communications in Soil Science and Plant Analysis, 31, 893-903. https://doi.org/10.1080/00103620009370485

[26]

Khademalrasoul, A., Naveed, M., Heckrath, G., Kumari, K. G. I. D., De Jonge, L. W., Elsgaard, L., Vogel, H. J., & Iversen, B. V. (2014). Biochar effects on soil aggregate properties under no-till maize. Soil Science, 179(6), 273-283. https://doi.org/10.1097/SS.0000000000000069

[27]

Lee, Y., & Oa, S. W. (2013). Nutrient transport characteristics of livestock manure in a farmland. International Journal of Recycling of Organic Waste in Agriculture, 2, 1. https://doi.org/10.1186/2251-7715-2-1

[28]

Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

[29]

Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

[30]

Little, J. L., Bennett, D. R., & Miller, J. J. (2005). Nutrient and sediment losses under simulated rainfall following manure incorporation by different methods. Journal of Environmental Quality, 34(5), 1883-1895. https://doi.org/10.2134/jeq.2005.0056

[31]

McGeehan, S. L., & Naylor, D. V. (1988). Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis, 19(4), 493-505. https://doi.org/10.1080/00103628809367953

[32]

Mehlich, A. (1984). Mehlich-3 soil test extractant: A modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409-1416. https://doi.org/10.1080/00103628409367568

[33]

Moore, J. E., & Kunkle, W. E. (1995). Improving forage supplementation for beef cattle [Conference presentation abstract]. 6th Florida Ruminant Nutrition Symposium, https://uflorida.sharepoint.com/teams/IFAS-AnimalSciences/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FIFAS%2DAnimalSciences%2FShared%20Documents%2Fdairy%2Frns%2F1995%2FMoore%2Epdf&parent=%2Fteams%2FIFAS%2DAnimalSciences%2FShared%20Documents%2Fdairy%2Frns%2F1995&p=true&ga=1

[34]

Morrissey, J., & Guerinot, M. L. (2009). Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews, 109(10), 4553-4567. https://doi.org/10.1021/cr900112r

[35]

Muir, J. P., Butler, T., Helton, T. J., & McFarland, M. L. (2010). Dairy manure compost application rate and timing influence bermudagrass yield and nutrient concentration. Crop Science, 50(5), 2133-2139. https://doi.org/10.2135/cropsci2009.10.0571

[36]

National Academies of Sciences, Engineering and Medicine. (2016). Nutrient requirements of beef cattle: Eight revised edition. The National Academies Press.

[37]

Nelson, D. W., & Sommers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65(1), 109-112. https://doi.org/10.2134/agronj1973.00021962006500010033x

[38]

Niraula, S., Choi, Y.-K., Payne, K., Muir, J. P., Kan, E., & Chang, W.-S. (2021). Dairy effluent-saturated biochar alters microbial communities and enhances bermudagrass growth and soil fertility. Agronomy, 11, 1794. https://doi.org/10.3390/agronomy11091794

[39]

Payne, J. B., & Lawrence, J. (2019). Manure as a source of crop nutrients and soil amendment. https://lpelc.org/manure-as-a-source-of-crop-nutrients-and-soil-amendment/

[40]

Pecci Canisares, L., Grove, J., Miguez, F., & Poffenbarger, H. (2021). Long-term no-till increases soil nitrogen mineralization but does not affect optimal corn nitrogen fertilization practices relative to inversion tillage. Soil & Tillage Research, 213, 105080. https://doi.org/10.1016/j.still.2021.105080

[41]

Penn, C., & Camberato, J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120

[42]

Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Van Groenigen, K. J., Lee, J., Van Gestel, N., Six, J., Venterea, R. T., & Van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156-168. https://doi.org/10.1016/j.fcr.2015.07.020

[43]

Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345-365. https://doi.org/10.1016/j.chemosphere.2019.03.170

[44]

Sanderson, M. A., & Jones, R. M. (1997). Forage yields, nutrient uptake, soil chemical changes, and nitrogen volatilization from bermudagrass treated with dairy manure. Journal of Production Agriculture, 10(2), 266-271. https://doi.org/10.2134/jpa1997.0266

[45]

Sanderson, M. A., Jones, R. M., McFarland, M. J., Stroup, J., Reed, R. L., & Muir, J. P. (2001). Nutrient movement and removal in a switchgrass biomass–filter strip system treated with dairy manure. Journal of Environmental Quality, 30, 210-216. https://doi.org/10.2134/jeq.2001.301210x

[46]

Sharpley, A. N., Mcdowell, R. W., & Kleinman, P. J. A. (2001). Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant and Soil, 237, 287-307. https://doi.org/10.1023/A:1013335814593

[47]

Sharpley, A. N., & Withers, P. J. A. (1994). The environmentally-sound management of agricultural phosphorus. Fertilizer Research, 39, 133-146. https://doi.org/10.1007/BF00750912

[48]

Sheldrick, B. H. (1986). Test of the LECO CHN-600 determinator for soil carbon and nitrogen analysis. Canadian Journal of Soil Science, 66(3), 543-545. https://doi.org/10.4141/cjss86-055

[49]

Silvestrini, F., & Saldanha, E. (2023). Availability of B to plant. www.agriculture.borax.com

[50]

Sorrenti, G., Masiello, C. A., & Toselli, M. (2016). Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 272, 10-19. https://doi.org/10.1016/j.geoderma.2016.02.017

[51]

Stinner, B. R., Odum, E. P., & Crossley, Jr., D. A. (1983). Nutrient uptake by vegetation in relation to other ecosystem processes in conventional tillage, no-tillage and old-field systems. Agriculture, Ecosystem & Environment, 10(1), 1-13. https://doi.org/10.1016/0167-8809(83)90064-6

[52]

Storer, D. A. (1984). A simple high sample volume ashing procedure for determination of soil organic matter. Communications in Soil Science and Plant Analysis, 15(7), 759-772. https://doi.org/10.1080/00103628409367515

[53]

Sweeney, R. A. (1989). Generic combustion method for determination of crude protein in feeds: Collaborative study. Journal Association of Official Analytical Chemists, 72(5), 770-774. https://doi.org/10.1093/jaoac/72.5.770

[54]

US National Weather Service. (2024). Accessed December 20, 2024. https://www.weather.gov/wrh/Climate?wfo=fwd

[55]

Xu, X., Huang, H., Zhang, Y., Xu, Z., & Cao, X. (2019). Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environmental Pollution, 244, 423-430. https://doi.org/10.1016/j.envpol.2018.10.068

[56]

Yi, Z., Jeyakumar, P., Yin, C., & Sun, H. (2023). Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH3 volatilization, and N2O emission in paddy soil. Frontiers in Microbiology, 14, 1174805. https://doi.org/10.3389/fmicb.2023.1174805

[57]

Zikeli, S., Gruber, S., Teufel, C.-F., Hartung, K., & Claupein, W. (2013). Effects of reduced tillage on crop yield, plant available nutrients and soil organic matter in a 12-year long-term trial under organic management. Sustainability, 5(9), 3876-3894. https://doi.org/10.3390/su5093876

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/