Impact of novel harvest strategies and improved cultivars on alfalfa yield and nutritive value in a Mediterranean environment

Sultan Begna , Brenda Perez , Abdelmoneim Z. Mohamed , Katherine Swanson , E. Charles Brummer , Dong Wang , Khaled Bali , Daniel H. Putnam

Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 79 -87.

PDF
Grassland Research ›› 2025, Vol. 4 ›› Issue (1) : 79 -87. DOI: 10.1002/glr2.12112
RESEARCH ARTICLE

Impact of novel harvest strategies and improved cultivars on alfalfa yield and nutritive value in a Mediterranean environment

Author information +
History +
PDF

Abstract

Background: The development of alfalfa cultivars with improved digestibility may minimize the yield-quality tradeoff, enabling higher quality with late-harvested forage and possibly higher yields.

Methods: An irrigated experiment conducted over 4 years compared 28-d harvest schedules with 35-d harvest schedules and an alternating 21-d and 35-d schedule. Four conventional cultivars and four cultivars developed for higher digestibility were grown under each schedule.

Results: Delayed cutting (35-d) yields were 16% greater and the staggered treatments were 6% higher than the 28-d strategy. The nutritive value decreased significantly with the 35-d schedule, but a “staggered” system provided nutritive value similar to the 28-d schedule while achieving higher yields. The nutritive value of cultivars was in the order of HarvXtra>Hi-Gest> conventional cultivars. The HarvXtra but not Hi-Gest cultivars achieved similar digestibility under the 35-d cutting schedule compared with conventional cultivars on a 28-d schedule.

Conclusions: This study clearly demonstrates that higher nutritive value cultivars of fall dormancy 6–9 grown with staggered or late cutting schedules can increase yields while maintaining higher nutritive value. The combination of staggered or late schedules with improved cultivars can maximize yields while maintaining the nutritive value of alfalfa, potentially breaking the alfalfa yield-quality tradeoff.

Keywords

cultivars / digestibility / forage quality / genetics / harvest strategies / Medicago sativa

Cite this article

Download citation ▾
Sultan Begna, Brenda Perez, Abdelmoneim Z. Mohamed, Katherine Swanson, E. Charles Brummer, Dong Wang, Khaled Bali, Daniel H. Putnam. Impact of novel harvest strategies and improved cultivars on alfalfa yield and nutritive value in a Mediterranean environment. Grassland Research, 2025, 4(1): 79-87 DOI:10.1002/glr2.12112

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecht, K. A., Wedin, W. F., & Buxton, D. R. (1987). Cell-wall composition and digestibility of alfalfa stems and leaves. Crop Science, 27(4), 735-741. https://doi.org/10.2135/cropsci1987.0011183X002700040027x

[2]

Arnold, A. M., Cassida, K. A., Albrecht, K. A., Hall, M. H., Min, D., Xu, X., Orloff, S., Undersander, D. J., van Santen, E., & Sulc, R. M. (2019). Multistate evaluation of reduced-lignin alfalfa harvested at different intervals. Crop Science, 59(4), 1799-1807. https://doi.org/10.2135/cropsci2019.01.0023

[3]

Barnes, D. K., Goplen, B. P., & Baylor, J. E. (1988). Highlights in the USA and Canada. In A. A. Hanson, D. K. Barnes, & R. R. Hill (Eds.), Alfalfa and alfalfa improvement (pp. 1-24). ASA. https://doi.org/10.2134/agronmonogr29.c1

[4]

Barros, J., Temple, S., & Dixon, R. A. (2019). Development and commercialization of reduced lignin alfalfa. Current Opinion in Biotechnology, 56, 48-54. https://doi.org/10.1016/j.copbio.2018.09.003

[5]

Casler, M. D. (1987). In vitro digestibility of dry matter and cell wall constituents of smooth bromegrass forage. Crop Science, 27(5), 931-934. https://doi.org/10.2135/cropsci1987.0011183X002700050021x

[6]

Casler, M. D., Buxton, D. R., & Vogel, K. P. (2002). Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theoretical and Applied Genetics, 104, 127-131. https://doi.org/10.1007/s001220200015

[7]

Casler, M. D., & Vogel, K. P. (1999). Accomplishments and impact from breeding for increased forage nutritional value. Crop Science, 39(1), 12-20. https://doi.org/10.2135/cropsci1999.0011183X003900010003x

[8]

Cherney, J. H., Smith, S. R., Sheaffer, C. C., & Cherney, D. J. R. (2020). Nutritive value and yield of reduced-lignin alfalfa cultivars in monoculture and in binary mixtures with perennial grass. Agronomy Journal, 112, 352-367. https://doi.org/10.1002/agj2.20045

[9]

CIMIS. (2023). California irrigation management information system. https://cimis.water.ca.gov/

[10]

Eckberg, J. O., Wells, S. S., Jungers, J. M., Lamb, J. F. S., & Sheaffer, C. C. (2022). Alfalfa forage yield, milk yield, and nutritive value under intensive cutting. Agrosystems, Geosciences & Environment, 5(2), e20246. https://doi.org/10.1002/agg2.20246

[11]

Fisher, M. (2017). Reduced-lignin ALFALFA provides flexibility for farmers. Crops & Soils, 50(5), 4-9. https://doi.org/10.2134/cs2017.50.0508

[12]

Getachew, G., Laca, E. A., Putnam, D. H., Witte, D., McCaslin, M., Ortega, K. P., & DePeters, E. J. (2018). The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production. Journal of the Science of Food and Agriculture, 98(11), 4205-4215. https://doi.org/10.1002/jsfa.8942

[13]

Grev, A. M., Wells, M. S., Samac, D. A., Martinson, K. L., & Sheaffer, C. C. (2017). Forage accumulation and nutritive value of reduced lignin and reference alfalfa cultivars. Agronomy Journal, 109(6), 2749-2761. https://doi.org/10.2134/agronj2017.04.0237

[14]

Guo, D., Chen, F., Inoue, K., Blount, J. W., & Dixon, R. A. (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. The Plant Cell, 13(1), 73-88. https://doi.org/10.1105/tpc.13.1.73

[15]

Jung, H. G., & Vogel, K. P. (1986). Influence of lignin on digestibility of forage cell wall material. Journal of Animal Science, 62(6), 1703-1712. https://doi.org/10.2527/jas1986.6261703x

[16]

Kallenbach, R. L., Nelson, C. J., & Coutts, J. H. (2002). Yield, quality, and persistence of grazing-and hay-type alfalfa under three harvest frequencies. Agronomy Journal, 94(5), 1094-1103. https://doi.org/10.2134/agronj2002.1094

[17]

Kalu, B. A., & Fick, G. W. (1981). Quantifying morphological development of alfalfa for studies of herbage quality. Crop Science, 21(2), 267-271. https://doi.org/10.2135/cropsci1981.0011183X002100020016x

[18]

Long, R., Leinfelder-Miles, M., Light, S. E., Putnam, D. H., & Murdock, J. (2020). Sample costs to establish and produce alfalfa hay. University of California Agricultural and Natural Resources, and UC Davis. https://coststudyfiles.ucdavis.edu/uploads/pub/2021/04/20/alfalfaorganiccadraft42021.pdf

[19]

Min, D. (2016). Effects of cutting interval between harvests on dry matter yield and nutritive value in alfalfa. American Journal of Plant Sciences, 7(8), 1226-1231. https://doi.org/10.4236/ajps.2016.78118

[20]

Moore, K. J., & Jung, H. J. G. (2001). Lignin and fiber digestion. Journal of Range Management, 54, 420-430. https://doi.org/10.2307/4003113

[21]

NAFA. (2023). Alfalfa variety ratings. https://www.alfalfa.org/varietyratings.phpNASS, Quickstats. http://quickstats.nass.usda.go

[22]

NASS. (2023). USDA-National Agricultural Statistics Service. https://www.nass.usda.gov/Data_and_Statistics/index.php

[23]

Orloff, S., & Putnam, D. H. (2006). Cutting schedule strategies to maximize returns Proceedings 2006 Western Alfalfa & Forage Symposium. UCCE, UC Davis. https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2006/06-229.pdf

[24]

Orloff, S., & Putnam, D. H. (2007). Harvest strategies for alfalfa, Irrigated alfalfa management for Mediterranean and desert zones (p. 8299). University of California Ag and Natural Resources Publication. http://alfalfa.ucdavis.edu/Irrigated

[25]

Orloff, S., & Putnam, D. H. (2010). Adjusting alfalfa cutting schedules for economic conditions Proceedings of the 40th California Alfalfa & Forage UCCE, Department of Plant Sciences, UC Davis. https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2010/10-191.pdf

[26]

Palmonari, A., Fustini, M., Canestrari, G., Grilli, E., & Formigoni, A. (2014). Influence of maturity on alfalfa hay nutritional fractions and indigestible fiber content. Journal of Dairy Science, 97(12), 7729-7734. https://doi.org/10.3168/jds.2014-8123

[27]

Putnam, D. H., & Orloff, S. (2016). Agronomic factors affecting forage quality in alfalfa, Proceedings of California Alfalfa and Forage Symposium, Reno, NV, Nov 29–Dec 12, 2016. UC Cooperative Extension, Plant Science Department, UC Davis. https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2016/Putnam%20Forage%20Quality.pdf

[28]

Putnam, D. H., Orloff, S., & Teuber, L. R. (2005). Strategies for balancing quality and yield in alfalfa using cutting schedules and varieties, Proceedings 35th California Alfalfa and Forage Symposium, Visalia, CA 12–14 December, 2005 (pp. 12–14). UC Cooperative Extension, University of California, Davis, CA. https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2005/05-237.pdf

[29]

Putnam, D. H., Robinson, P., & DePeters, E. (2008). Forage quality and Testing. In C. G. Summers & D. H. Putnam (Eds.), Irrigated alfalfa management for Mediterranean and desert zones. University of California Alfalfa & Forage Systems Workgroup. https://alfalfa.ucdavis.edu/sites/g/files/dgvnsk12586/files/media/documents/UCAlfalfa8302ForageQuality-reg.pdf

[30]

Reddy, M. S. S., Chen, F., Shadle, G., Jackson, L., Aljoe, H., & Dixon, R. A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences United States of America, 102(46), 16573-16578. https://doi.org/10.1073/pnas.0505749102

[31]

Reich, J. M., Johnson, D. W., Darling, M. E., & Engh, T. A. (2015). Low lignin non-transgenic alfalfa varieties and methods for producing the same. Google Patents Publication: WO 2016/054071 A1. https://patents.google.com/patent/WO2016054071A1/en

[32]

Sewalt, V. J. H., Ni, W., Jung, H. G., & Dixon, R. A. (1997). Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. Journal of Agricultural and Food Chemistry, 45(5), 1977-1983. https://doi.org/10.1021/jf9609690

[33]

Sheaffer, C. C., Lacefield, G. D., & Marble, V. L. (1988). Cutting schedules and stands. Alfalfa and alfalfa improvement. In A. A. Hanson, D. K. Barnes, & R. R. Hill (Eds.), Agronomy series No. 29 (pp. 412-438). American Society of Agronomy.

[34]

Sheaffer, C. C., Martin, N. P., Lamb, J. F. S., Cuomo, G. R., Jewett, J. G., & Quering, S. R. (2000). Leaf and stem properties of alfalfa entries. Agronomy Journal, 92(4), 733-739. https://doi.org/10.2134/agronj2000.924733x

[35]

Smith, S. R., Bouton, J. H., & Hoveland, C. S. (1989). Alfalfa persistence and regrowth potential under continuous grazing. Agronomy Journal, 81(6), 960-965. https://doi.org/10.2134/agronj1989.00021962008100060023x

[36]

Tucak, M., Ravlić, M., Horvat, D., & Čupić, T. (2021). Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy, 11, 2176. https://doi.org/10.3390/agronomy11112176

[37]

Undersander, D., Hall, M. H., Vassalotti, P., & Cosgrove, D. (2011). Alfalfa germination & growth (A3681). Cooperative Extension Publishing.

[38]

Ventroni, L. M., Volenec, J. J., & Cangiano, C. A. (2010). Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crops Research, 119(2–3), 252-259. https://doi.org/10.1016/j.fcr.2010.07.015

[39]

Xu, X., & Min, D. (2022). Harvesting schedule effects on forage yield and nutritive values in low-lignin alfalfa. Journal of Animal Science and Technology, 64(2), 262-273. https://doi.org/10.5187/jast.2022.e10

[40]

Yu, P., Christensen, D. A., McKinnon, J. J., & Markert, J. D. (2003). Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Canadian Journal of Animal Science, 83(2), 279-290. https://doi.org/10.4141/A02-053

[41]

Zhou, R., Jackson, L., Shadle, G., Nakashima, J., Temple, S., Chen, F., & Dixon, R. A. (2010). Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences United States of America, 107(41), 17803-17808. https://doi.org/10.1073/pnas.1012900107

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/