Similar biogeographic patterns of abundant and rare bacterial communities are driven by distinct assembly mechanisms in grassland soils

Sihao Zhu , Bai Yue , Kun Liu , Ning Zhao

Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 373 -384.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 373 -384. DOI: 10.1002/glr2.12108
RESEARCH ARTICLE

Similar biogeographic patterns of abundant and rare bacterial communities are driven by distinct assembly mechanisms in grassland soils

Author information +
History +
PDF

Abstract

Background: The regional species pool and local community assembly processes shape the biogeographic patterns of soil bacterial community diversity. However, how community assembly mechanisms regulate biogeographic patterns in rare and abundant bacterial communities remains unclear.

Methods: Soil samples of 16 grassland habitats across the Inner Mongolian Plateau and Qinghai-Tibet Plateau (QTP) transects were collected to investigate the variation of β-diversity in rare taxa (RT) and abundant taxa (AT). Highthroughput sequencing analysis of 16S rRNA gene amplicons was implemented on an Illumina MiSeq platform.

Results: Significant distance-decay relationships of β-diversity in RT and AT were observed at transect and habitat scales, and the turnover rate increased from desert to meadow steppe in both taxa. For variations of β-diversity along environmental gradient, the regional species pool had a limited effect on both taxa except RT in QTP. Deterministic processes, including homogeneous selection (85.1%–97.3%) and heterogenous selection (48.1%–64.2%), dominated the assembly of RT at both the transect and habitat scales. In contrast, the assembly of AT exhibited habitat specificity and was dominated by homogeneous selection (47.2%–80.6%), heterogenous selection (42.1%–54.2%), and dispersal limitation (41.8%) in different transects and habitats. Moreover, the local assembly processes of the AT community were more stochastic than those of the RT community. Mean annual precipitation (MAP) was the dominant driver of community assembly at the transect scale, with extreme MAP (<200 or >400mm) resulting in more deterministic processes and a moderate level of MAP (200–400mm) leading to more stochastic processes. However, the effects of geographical distance and soil properties on different grassland habitats cannot be ignored.

Conclusions: Although both bacterial taxa exhibited significant distance-decay patterns, different assembly mechanisms shaped the β-diversity of AT and RT communities in grassland soils. Our results suggested that MAP can mediate community assembly of soil bacteria on a large scale.

Keywords

abundant and rare taxa / biogeographic pattern / distance–decay relationship / local community assembly process / regional species pool / soil bacterial community

Cite this article

Download citation ▾
Sihao Zhu, Bai Yue, Kun Liu, Ning Zhao. Similar biogeographic patterns of abundant and rare bacterial communities are driven by distinct assembly mechanisms in grassland soils. Grassland Research, 2024, 3(4): 373-384 DOI:10.1002/glr2.12108

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell, C. W., Acosta-Martinez, V., McIntyre, N. E., Cox, S., Tissue, D. T., & Zak, J. C. (2009). Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan Desert Grassland. Microbial Ecology, 58, 827–842.

[2]

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6, 90.

[3]

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13, 581–583.

[4]

Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366, 2351–2363.

[5]

Chen, Q.-L., Ding, J., Zhu, D., Hu, H.-W., Delgado-Baquerizo, M., Ma, Y.-B., He, J.-Z., & Zhu, Y.-G. (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 141, 107686.

[6]

Chu, H., Gao, G.-F., Ma, Y., Fan, K., & Delgado-Baquerizo, M. (2020). Soil microbial biogeography in a changing world: Recent advances and future perspectives. mSystems, 5, e00803-19.

[7]

Custer, G. F., Bresciani, L., & Dini-Andreote, F. (2022). Ecological and evolutionary implications of microbial dispersal. Frontiers in Microbiology, 13, 855859.

[8]

Dini-Andreote, F., Stegen, J. C., van Elsas, J. D., & Salles, J. F. (2015). Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences United States of America, 112, E1326–E1332.

[9]

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927–930.

[10]

Du, S., Dini-Andreote, F., Zhang, N., Liang, C., Yao, Z., Zhang, H., & Zhang, D. (2020). Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Applied and Environmental Microbiology, 86, e00322-20.

[11]

van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences United States of America, 109, 1159–1164.

[12]

Feng, M., Tripathi, B. M., Shi, Y., Adams, J. M., Zhu, Y.-G., & Chu, H. (2019). Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. MicrobiologyOpen, 8, e00851.

[13]

Gao, G.-F., Peng, D., Tripathi, B. M., Zhang, Y., & Chu, H. (2020). Distinct community assembly processes of abundant and rare soil bacteria in coastal wetlands along an inundation gradient. mSystems, 5, 10–1128.

[14]

Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1–19.

[15]

Graco-Roza, C., Aarnio, S., Abrego, N., Acosta, A. T. R., Alahuhta, J., Altman, J., Angiolini, C., Aroviita, J., Attorre, F., Baastrup-Spohr, L., Barrera-Alba, J. J., Belmaker, J., Biurrun, I., Bonari, G., Bruelheide, H., Burrascano, S., Carboni, M., Cardoso, P., Carvalho, J. C., … Soininen, J. (2022). Distance decay 2.0—A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 31, 1399–1421.

[16]

Gutknecht, J. L. M., Field, C. B., & Balser, T. C. (2012). Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology, 18, 2256–2269.

[17]

Hou, J., Wu, L., Liu, W., Ge, Y., Mu, T., Zhou, T., Li, Z., Zhou, J., Sun, X., Luo, Y., & Christie, P. (2020). Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Science of the Total Environment, 730, 139116.

[18]

Jackson, D. A., & Somers, K. M. (1989). Are probability estimates from the permutation model of Mantel’s test stable? Canadian Journal of Zoology, 67, 766–769.

[19]

Ji, M., Kong, W., Stegen, J., Yue, L., Wang, F., Dong, X., Cowan, D. A., & Ferrari, B. C. (2020). Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environmental Microbiology, 22, 2261–2272.

[20]

Jia, X., Dini-Andreote, F., & Falcão Salles, J. (2018). Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 26, 738–747.

[21]

Jia, X., Dini-Andreote, F., & Salles, J. F. (2022). Unravelling the interplay of ecological processes structuring the bacterial rare biosphere. ISME Communications, 2, 96.

[22]

Jiao, S., & Lu, Y. (2020). Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environmental Microbiology, 22, 1052–1065.

[23]

Jiao, S., Wang, J., Wei, G., Chen, W., & Lu, Y. (2019). Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere, 235, 248–259.

[24]

Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., Küsel, K., Rillig, M. C., Rivett, D. W., Salles, J. F., van der Heijden, M. G. A., Youssef, N. H., Zhang, X., Wei, Z., & Hol, W. H. G. (2017). Where less may be more: How the rare biosphere pulls ecosystems strings. The ISME Journal, 11, 853–862.

[25]

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464.

[26]

Kou, Y., Li, J., Wang, Y., Li, C., Tu, B., Yao, M., & Li, X. (2017). Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biology and Biochemistry, 111, 104–114.

[27]

Kraft, N. J. B., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., Stegen, J. C., Vellend, M., Boyle, B., Anderson, M. J., Cornell, H. V., Davies, K. F., Freestone, A. L., Inouye, B. D., Harrison, S. P., & Myers, J. A. (2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333, 1755–1758.

[28]

Liao, J., Cao, X., Wang, J., Zhao, L., Sun, J., Jiang, D., & Huang, Y. (2017). Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnology and Oceanography, 62, 723–735.

[29]

Liu, H., Zhu, T., Xu, X., Yao, J., Zhou, C., Wu, J., Li, B., & Nie, M. (2022). The relative importance of intraspecific variation in above- and belowground plant traits in shaping salt marsh soil bacterial diversity and composition. Plant and Soil, 474, 125–140.

[30]

Liu, L., Yang, J., Yu, Z., & Wilkinson, D. M. (2015). The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. The ISME Journal, 9, 2068–2077.

[31]

Liu, L., Zhu, L., Yan, R., Yang, Y., Adams, J. M., & Liu, J. (2023). Abundant bacterial subcommunity is structured by a stochastic process in an agricultural system with P fertilizer inputs. Science of the Total Environment, 871, 162178.

[32]

Liu, N., Hu, H., Ma, W., Deng, Y., Wang, Q., Luo, A., Meng, J., Feng, X., & Wang, Z. (2021). Relative importance of deterministic and stochastic processes on soil microbial community assembly in temperate grasslands. Microorganisms, 9, 1929.

[33]

Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13, 217–229.

[34]

Mo, Y., Zhang, W., Yang, J., Lin, Y., Yu, Z., & Lin, S. (2018). Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. The ISME Journal, 12, 2198–2210.

[35]

Ning, D., Deng, Y., Tiedje, J. M., & Zhou, J. (2019). A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences United States of America, 116, 16892–16898.

[36]

Pahlich, E., & Gerlitz, C. (1980). Deviations from michaelis-menten behaviour of plant glutamate dehydrogenase with ammonium as variable substrate. Phytochemistry, 19, 11–13.

[37]

Pan, H., Gao, H., Peng, Z., Chen, B., Chen, S., Liu, Y., Gu, J., Wei, X., Chen, W., Wei, G., & Jiao, S. (2022). Aridity threshold induces abrupt change of soil abundant and rare bacterial biogeography in dryland ecosystems. mSystems, 7, e01309-21.

[38]

Pedrós-Alió C. (2012). The rare bacterial biosphere. Annual Review of Marine Science, 4, 449–466.

[39]

Peng, Z., Wang, Z., Liu, Y., Yang, T., Chen, W., Wei, G., & Jiao, S. (2021). Soil phosphorus determines the distinct assembly strategies for abundant and rare bacterial communities during successional reforestation. Soil Ecology Letters, 3, 342–355.

[40]

Pester, M., Bittner, N., Deevong, P., Wagner, M., & Loy, A. (2010). A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. The ISME Journal, 4, 1591–1602.

[41]

Shade, A., Jones, S. E., Caporaso, J. G., Handelsman, J., Knight, R., Fierer, N., & Gilbert, J. A. (2014). Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio, 5, e01371-14.

[42]

Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., Rockhold, M. L., & Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069–2079.

[43]

Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653–1664.

[44]

Su, Y., Hu, Y., Zi, H., Chen, Y., Deng, X., Hu, B., & Jiang, Y. (2022). Contrasting assembly mechanisms and drivers of soil rare and abundant bacterial communities in 22-year continuous and non-continuous cropping systems. Scientific Reports, 12, 3264.

[45]

Sun, Q., Li, H.-Y., Li, K., Zhang, X.-Q., Shi, Y.-B., Wu, Y.-T., Li, X., Li, Z.-Y., Zhang, J.-H., Wang, L.-X., & Liang, C.-Z. (2023). Climatic factors regulate the assembly processes of abundant and rare microbial communities in desert soil. Journal of Plant Ecology, 16, rtad032.

[46]

Tripathi, B. M., Stegen, J. C., Kim, M., Dong, K., Adams, J. M., & Lee, Y. K. (2018). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 12, 1072–1083.

[47]

Wang, H.-C., Qi, J.-F., Xiao, D.-R., Wang, Y., Shi, W.-Y., & Wang, H. (2023). Bacterial community diversity and underlying assembly patterns along vertical soil profiles in wetland and meadow habitats on the Zoige Plateau, China. Soil Biology and Biochemistry, 184, 109076.

[48]

Wang, J., Li, M., & Li, J. (2021). Soil pH and moisture govern the assembly processes of abundant and rare bacterial communities in a dryland montane forest. Environmental Microbiology Reports, 13, 862–870.

[49]

Wang, M., Shi, S., Lin, F., Hao, Z., Jiang, P., & Dai, G. (2012). Effects of soil water and nitrogen on growth and photosynthetic response of manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLoS One, 7, e30754.

[50]

Wang, P., Ding, L., Zou, C., Zhang, Y., & Wang, M. (2022). Rhizosphere element circling, multifunctionality, aboveground productivity and trade-offs are better predicted by rhizosphere rare taxa. Frontiers in Plant Science, 13, 985574.

[51]

Wang, X., Zhang, Q., Zhang, Z., Li, W., Liu, W., Xiao, N., Liu, H., Wang, L., Li, Z., Ma, J., Liu, Q., Ren, C., Yang, G., Zhong, Z., & Han, X. (2023). Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta, 2, e106.

[52]

Wang, X.-B., X.-T., Yao, J., Wang, Z.-W., Deng, Y., Cheng, W.-X., Zhou, J.-Z., & Han, X.-G. (2017). Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. The ISME Journal, 11, 1345–1358.

[53]

Wang, Y., Li, C., Tu, B., Kou, Y., & Li, X. (2021). Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biology and Biochemistry, 160, 108338.

[54]

Xiao, X., Zhang, N., Ni, H., Yang, Y., Zhou, J., Sun, B., & Liang, Y. (2021). A latitudinal gradient of microbial β-diversity in continental paddy soils. Global Ecology and Biogeography, 30, 909–919.

[55]

Xue, M., Guo, Z., Gu, X., Gao, H., Weng, S., Zhou, J., Gu, D., Lu, H., & Zhou, X. (2020). Rare rather than abundant microbial communities drive the effects of long-term greenhouse cultivation on ecosystem functions in subtropical agricultural soils. Science of the Total Environment, 706, 136004.

[56]

Yang, L., Ning, D., Yang, Y., He, N., Li, X., Cornell, C. R., Bates, C. T., Filimonenko, E., Kuzyakov, Y., Zhou, J., Yu, G., & Tian, J. (2022). Precipitation balances deterministic and stochastic processes of bacterial community assembly in grassland soils. Soil Biology and Biochemistry, 168, 108635.

[57]

Yang, Y., Cheng, K., Li, K., Jin, Y., & He, X. (2022). Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. Science of the Total Environment, 838, 156334.

[58]

Yi, M., Fang, Y., Hu, G., Liu, S., Ni, J., & Liu, T. (2022). Distinct community assembly processes underlie significant spatiotemporal dynamics of abundant and rare bacterioplankton in the Yangtze River. Frontiers of Environmental Science & Engineering, 16, 79.

[59]

Zeng, Q., An, S., Liu, Y., Wang, H., & Wang, Y. (2019). Biogeography and the driving factors affecting forest soil bacteria in an arid area. Science of the Total Environment, 680, 124–131.

[60]

Zhang, X., Liu, S., Wang, J., Huang, Y., Freedman, Z., Fu, S., Liu, K., Wang, H., Li, X., Yao, M., Liu, X., & Schuler, J. (2020). Local community assembly mechanisms shape soil bacterial β diversity patterns along a latitudinal gradient. Nature Communications, 11, 5428.

[61]

Zhao, Z., Ma, Y., Feng, T., Kong, X., Wang, Z., Zheng, W., & Zhai, B. (2022). Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods. Geoderma, 406, 115543.

[62]

Zheng, W., Zhao, Z., Lv, F., Wang, R., Wang, Z., Zhao, Z., Li, Z., & Zhai, B. (2021). Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer. Soil Biology and Biochemistry, 156, 108222.

[63]

Zhong, Y., Sorensen, P. O., Zhu, G., Jia, X., Liu, J., Shangguan, Z., Wang, R., & Yan, W. (2022). Differential microbial assembly processes and co-occurrence networks in the soil-root continuum along an environmental gradient. iMeta, 1, e18.

[64]

Zhou, J., Ning, D., 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002-17.

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/