Genomic prediction of forage nutritive value in perennial ryegrass

Agnieszka Konkolewska , Michael Dineen , Rachel Keirse , Patrick Conaghan , Dan Milbourne , Susanne Barth , Aonghus Lawlor , Stephen Byrne

Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 331 -346.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 331 -346. DOI: 10.1002/glr2.12104
RESEARCH ARTICLE

Genomic prediction of forage nutritive value in perennial ryegrass

Author information +
History +
PDF

Abstract

Background: Despite its importance to animal production potential, genetic gain for forage nutritive value has been limited in perennial ryegrass (Lolium perenne L.) breeding. The objective of this study was to phenotype a training population and develop prediction models to assess the potential of predicting organic matter digestibility (OMD) and neutral detergent fiber (NDF) with genotyping-by-sequencing data.

Methods: Near infra-red reflectance spectroscopy calibrations for OMD and NDF were developed and used to phenotype a spaced plant training population of n = 1606, with matching genotype-by-sequencing data, for developing genomic selection models. F2 families derived from the training population were also evaluated for OMD and NDF in sward plots and used to empirically validate prediction models.

Results: Sufficient genotypic variation exists in breeding populations to improve forage nutritive value, and spectral bands contributing to calibrations were identified. OMD and NDF can be predicted from genomic data with moderate accuracy (predictive ability in the range of 0.51–0.59 and 0.33–0.57, respectively) and models developed on individual plants outperform those developed from family means. Encouragingly, genomic prediction models developed on parental plants can predict OMD in subsequent generations grown as competitive swards.

Conclusions: These findings suggest that genetic improvement in forage nutritive value can be accelerated through the application of genomic prediction models.

Keywords

grass nutritive value / plant breeding / precision agriculture

Cite this article

Download citation ▾
Agnieszka Konkolewska, Michael Dineen, Rachel Keirse, Patrick Conaghan, Dan Milbourne, Susanne Barth, Aonghus Lawlor, Stephen Byrne. Genomic prediction of forage nutritive value in perennial ryegrass. Grassland Research, 2024, 3(4): 331-346 DOI:10.1002/glr2.12104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Annicchiarico, P., Nazzicari, N., Li, X., Wei, Y., Pecetti, L., & Brummer, E. C. (2015). Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics, 16, 1020.

[2]

Arojju, S. K., Cao, M., Zulfi Jahufer, M. Z., Barrett, B. A., & Faville, M. J. (2020). Genomic predictive ability for foliar nutritive traits in perennial ryegrass. G3: Genes|Genomes|Genetics, 10(2), 695–708.

[3]

Arojju, S. K., Conaghan, P., Barth, S., Milbourne, D., Casler, M. D., Hodkinson, T. R., Michel, T., & Byrne, S. L. (2018). Genomic prediction of crown rust resistance in Lolium perenne. BMC Genetics, 19(1), 35.

[4]

Baert, J., Ghesquiere, A., & Van Waes, C. (2014). Variation of cell wall digestibility in fodder grasses with particular focus on a perennial ryegrass breeding pool. In D. Sokolović C. Huyghe, & J. Radović (Eds.), Quantitative traits breeding for multifunctional grasslands and turf (pp. 261–265). Springer.

[5]

Barrett, B., Jahufer, Z., Arojju, S., Sise, J., & Faville, M. (2021). Forecasting the genetic and economic impacts of genomic selection in perennial ryegrass. Journal of New Zealand Grasslands, 92–98.

[6]

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

[7]

Beecher, M., Baumont, R., O’Donovan, M., Boland, T. M., Aufrère, J., Fleming, C., Galvin, N., & Lewis, E. (2018). Effects of harvesting perennial ryegrass at different levels of herbage mass on voluntary intake and in vivo digestibility in sheep. Grass and Forage Science, 73(2), 553–561.

[8]

Beleites, C., & Sergo, V. (2014). Hyperspec: A package to handle hyperspectral data sets in r [R package version 0.100.0]. https://github.com/r-hyperspec/hyperSpec

[9]

Berauer, B. J., Wilfahrt, P. A., Reu, B., Schuchardt, M. A., Garcia-Franco, N., Zistl-Schlingmann, M., Dannenmann, M., Kiese, R., Kühnel, A., & Jentsch, A. (2020). Predicting forage quality of species-rich pasture grasslands using vis-nirs to reveal effects of management intensity and climate change. Agriculture, Ecosystems & Environment, 296, 106929.

[10]

Borchers, H. W. (2021). Pracma: Practical numerical math functions [R package version 2.3.3]. https://CRAN.R-project.org/package=pracma

[11]

Byrne, S. L., Conaghan, P., Barth, S., Arojju, S. K., Casler, M., Michel, T., Velmurugan, J., & Milbourne, D. (2017). Using variable importance measures to identify a small set of snps to predict heading date in perennial ryegrass. Scientific Reports, 7(1), 3566.

[12]

Cericola, F., Lenk, I., D., Byrne, S., Jensen, C. S., Pedersen, M. G., Asp, T., Jensen, J., & Janss, L. (2018). Optimized use of low-depth genotyping-by-sequencing for genomic prediction among multi-parental family pools and single plants in perennial ryegrass (Lolium perenne L.). Frontiers in Plant Science, 9, 369.

[13]

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2024). shiny: Web application framework for R. R package version 1.9.1.9000. https://github.com/rstudio/shiny

[14]

Colas, V. (2021). Nutritive value of forage grasses: Evolution during morphogenesis and genetic bases on perennial ryegrass [Doctoral dissertation, Université de Poitiers].

[15]

Colas, V., Barre, P., van Parijs, F., Wolters, L., Quitté Y., Ruttink, T., Roldán-Ruiz, I., Escobar Gutiérrez, A. J., & Muylle, H. (2022). Seasonal differences in structural and genetic control of digestibility in perennial ryegrass. Frontiers in Plant Science, 12, 801145.

[16]

Conaghan, P., & Casler, M. (2011). A theoretical and practical analysis of the optimum breeding system for perennial ryegrass. Irish Journal of Agricultural and Food Research, 50, 47–63.

[17]

Cortes, C., Damasceno, J. C., Bechet, G., & Prache, S. (2005). Species composition of ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) mixtures using various combinations of n-alkanes. Grass and Forage Science, 60(3), 254–261.

[18]

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and vcftools. Bioinformatics, 27(15), 2156–2158.

[19]

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of samtools and bcftools. GigaScience, 10(2), giab008.

[20]

Danieli, P. P., Carlini, P., Bernabucci, U., & Ronchi, B. (2004). Quality evaluation of regional forage resources by means of near infrared reflectance spectroscopy. Italian Journal of Animal Science, 3(4), 363–376.

[21]

Decruyenaere, V., Lecomte, P., Demarquilly, C., Aufrere, J., Dardenne, P., Stilmant, D., & Buldgen, A. (2009). Evaluation of green forage intake and digestibility in ruminants using near-infrared reflectance spectroscopy (nirs): Developing a global calibration. Animal Feed Science and Technology, 148(2–4), 138–156.

[22]

Dineen, M., McCarthy, B., Ross, D., Ortega, A., Dillon, P., & Van Amburgh, M. E. (2021). Characterization of the nutritive value of perennial ryegrass (Lolium perenne L.) dominated pastures using updated chemical methods with application for the cornell net carbohydrate and protein system. Animal Feed Science and Technology, 272, 114752.

[23]

Dowman, M. G., & Collins, F. C. (1982). The use of enzymes to predict the digestibility of animal feeds. Journal of the Science of Food and Agriculture, 33(8), 689–696.

[24]

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PLoS One, 6(5), e19379.

[25]

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrblup. The Plant Genome, 4, 250–255.

[26]

Esfandyari, H., D., Tessema, B. B., Janss, L. L., & Jensen, J. (2020). Effects of different strategies for exploiting genomic selection in perennial ryegrass breeding programs. G3: Genes|Genomes|Genetics, 10(10), 3783–3795.

[27]

D., Ashraf, B. H., Pedersen, M. G., Janss, L., Byrne, S., Roulund, N., Lenk, I., Didion, T., Asp, T., Jensen, C. S., et al (2016). Accuracy of genomic prediction in a commercial perennial ryegrass breeding program. The Plant Genome, 9(3).

[28]

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.

[29]

Gilliland, T. J., Ball, T., & Hennessy, D. (2021). Opportunities and challenges for breeding perennial ryegrass cultivars with improved livestock production potential. Irish Journal of Agricultural and Food Research, 59(2), 233–245.

[30]

Grinberg, N. F., Lovatt, A., Hegarty, M., Lovatt, A., Skøt, K. P., Kelly, R., Blackmore, T., Thorogood, D., King, R. D., Armstead, I., Powell, W., & Skøt, L. (2016). Implementation of genomic prediction in Lolium perenne (L.) breeding populations. Frontiers in Plant Science, 7, 133.

[31]

Groot, J. C. J., Lantinga, E. A., Neuteboom, J. H., & Deinum, B. (2003). Analysis of the temperature effect on the components of plant digestibility in two populations of perennial ryegrass. Journal of the Science of Food and Agriculture, 83(4), 320–329.

[32]

Guo, Z., Tucker, D. M., Basten, C. J., Gandhi, H., Ersoz, E., Guo, B., Xu, Z., Wang, D., & Gay, G. (2014). The impact of population structure on genomic prediction in stratified populations. Theoretical and Applied Genetics, 127, 749–762.

[33]

Hayes, B. J., Cogan, N. O. I., Pembleton, L. W., Goddard, M. E., Wang, J., Spangenberg, G. C., & Forster, J. W. (2013). Prospects for genomic selection in forage plant species. Plant Breeding, 132(2), 133–143.

[34]

Jafari, A., Connolly, V., & Walsh, E. (2003). Genetic analysis of yield and quality in full-sib families of perennial ryegrass (Lolium perenne L.) under two cutting managements. Irish Journal of Agricultural and Food Research, 42, 275–292.

[35]

Jahufer, M. Z. Z., Arojju, S. K., Faville, M. J., Ghamkhar, K., Luo, D., Arief, V., Yang, W.-H., Sun, M., DeLacy, I. H., Griffiths, A. G., Eady, C., Clayton, W., Stewart, A. V., George, R. M., Hoyos-Villegas, V., Basford, K. E., & Barrett, B. (2021). Deterministic and stochastic modelling of impacts from genomic selection and phenomics on genetic gain for perennial ryegrass dry matter yield. Scientific Reports, 11(1), 13265.

[36]

Kendall, C., Leonardi, C., Hoffman, P. C., & Combs, D. K. (2009). Intake and milk production of cows fed diets that differed in dietary neutral detergent fiber and neutral detergent fiber digestibility. Journal of Dairy Science, 92(1), 313–323.

[37]

Konkolewska, A. (2022). CalibrationSet. https://doi.org/10.6084/m9.figshare.18134204.v2

[38]

Konkolewska, A., Phang, S., Conaghan, P., Milbourne, D., Lawlor, A., & Byrne, S. (2023). Genomic prediction of seasonal forage yield in perennial ryegrass. Grassland Research, 2(3), 167–181.

[39]

Lenth, R. V. (2022). Emmeans: Estimated marginal means, aka least-squares means [R package version 1.8.1-1]. https://CRAN.R-project.org/package=emmeans

[40]

Lesnoff, M. (2021). R package rchemo: Dimension reduction, regression and discrimination for chemometrics. https://github.com/mlesnoff/rchemo

[41]

Li, H. (2011). A statistical framework for snp calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987–2993.

[42]

Li, X., Wei, Y., Acharya, A., Hansen, J. L., Crawford, J. L., Viands, D. R., Michaud, R., Claessens, A., & Brummer, E. C. (2015). Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. The Plant Genome, 8(2).

[43]

Liland, K. H. (2021). Emsc: Extended multiplicative signal correction [R package version 0.9.3]. https://CRAN.R-project.org/package=EMSC

[44]

Louie, G. V., Bowman, M. E., Tu, Y., Mouradov, A., Spangenberg, G., & Noel, J. P. (2010). Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. The Plant Cell, 22(12), 4114–4127.

[45]

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1), 10–12.

[46]

McDonagh, J., O’Donovan, M., McEvoy, M., & Gilliland, T. J. (2016). Genetic gain in perennial ryegrass (Lolium perenne) varieties 1973 to 2013. Euphytica, 212(2), 187–199.

[47]

McGovern, F., Garry, B., Creighton, P., Galvin, N., Hennessy, D., Kennedy, E., McHugh, N., O’Donovan, M., & Beecher, M. (2021). Validating the n-alkane technique for determining herbage dry matter intake in sheep offered perennial ryegrass harvested at varying growth stages and seasons. Animal Feed Science and Technology, 279, 115025.

[48]

Merrick, L. F., & Carter, A. H. (2021). Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs. The Plant Genome, 14(3), e20158.

[49]

Mevik, B.-H., Wehrens, R., & Liland, K. H. (2020). PLS: Partial least squares and principal component regression [R package version 2.7-3]. https://CRAN.R-project.org/package=pls

[50]

Morgan, D., & Stakelum, G. (1987). The prediction of the digestibility of herbage for dairy cows. Irish Journal of Agricultural Research, 26, 23–34.

[51]

Morgan, D., Stakelum, G., & Dwyer, J. (1989). Modified neutral detergent cellulase digestibility procedure for use with the ‘fibertec’ system. Irish Journal of Agricultural Research, 28, 91–92.

[52]

Nagy, I., Veeckman, E., Liu, C., Bel, M. V., Vandepoele, K., Jensen, C. S., Ruttink, T., & Asp, T. (2022). Chromosome-scale assembly and annotation of the perennial ryegrass genome. BMC Genomics, 23(1), 505.

[53]

Pembleton, L. W., Inch, C., Baillie, R. C., Drayton, M. C., Thakur, P., Ogaji, Y. O., Spangenberg, G. C., Forster, J. W., Daetwyler, H. D., & Cogan, N. O. I. (2018). Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. Theoretical and Applied Genetics, 131, 1891–1902.

[54]

Pérez, P., & de los Campos, G. (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics, 198(2), 483–495.

[55]

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

[56]

Redfearn, D. D., Venuto, B. C., Pitman, W. D., Alison, M. W., & Ward, J. D. (2002). Cultivar and environment effects on annual ryegrass forage yield, yield distribution, and nutritive value. Crop Science, 42(6), 2049–2054.

[57]

Reynkens, T. (2018). Rospca: Robust sparse pca using the rospca algorithm [R package version 1.0.4]. https://CRAN.R-project.org/package=rospca

[58]

Roberts, C. A., Stuth, J., & Flinn, P. (2004). Analysis of forages and feedstuffs. In C. A. Roberts, J. Workman, J. B. Reeves (eds), Near-Infrared Spectroscopy in Agriculture, 44, 229–267.

[59]

Robins, J. G., & Alan Lovatt, J. (2016). Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels. Euphytica, 208, 571–581.

[60]

RStudio Team. (2021). RStudio: Integrated development environment for R. RStudio, PBC. http://www.rstudio.com/

[61]

R.W. Mayes, M., & H. Dove, D. (2006). The use of n–alkanes and other plant–wax compounds as markers for studying the feeding and nutrition of large mammalian herbivores. BSAP Occasional Publication, 34, 153–182.

[62]

Schwanninger, M., Rodrigues, J. C., & Fackler, K. (2011). A review of band assignments in near-infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy, 19(5), 287–308.

[63]

Shenk, J. S., Workman, J. J., & Westerhaus, M. O. (2001). Application of NIR spectroscopy to agricultural products. Practical Spectroscopy Series, 27, 419–474.

[64]

Shetty, N., Rinnan, Å., & Gislum, R. (2012). Selection of representative calibration sample sets for near-infrared reflectance spectroscopy to predict nitrogen concentration in grasses. Chemometrics and Intelligent Laboratory Systems, 111(1), 59–65.

[65]

Van Soest, P. J. (1994). Nutritional ecology of the ruminant. (2nd ed.). Ithaca, NY: Cornell University Press.

[66]

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597.

[67]

Thorvaldsson, G., Tremblay, G. F., & Tapani Kunelius, H. (2007). The effects of growth temperature on digestibility and fibre concentration of seven temperate grass species. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 57(4), 322–328.

[68]

Toledo-Martín, E. M., García-García, M. C., Font, R., Moreno-Rojas, J. M., Salinas-Navarro, M., Gómez, P., Del río-Celestino, M. (2018). Quantification of total phenolic and carotenoid content in blackberries (Rubus fructicosus L.) using near infrared spectroscopy (NIRS) and multivariate analysis. Molecules, 23(12), 3191.

[69]

Uitdewilligen, J. G. A. M. L., Wolters, A.-M. A., D’hoop, B. B., Borm, T. J. A., Visser, R. G. F., & Van Eck, H. J. (2013). A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One, 8(5), e62355.

[70]

Uwe, L., Short, T., Kienzle, P., Schnackenberg, S., Billinghurst, D., Borchers, H.-W., Carezia, A., Dupuis, P., Eaton, J. W., Habel, K., Hornik, K., Krey, S., Lash, B., Leisch, F., Mersmann, O., Neis, P., Ruohio, J., Smith, J., Stewart, D., & Weingessel, A. (2014). Signal: Signal processing [R package version 2.3.3]. http://r-forge.r-project.org/projects/signal/

[71]

Vetharaniam, I., Kelly, W., Attwood, G., & Harris, P. (2014). A 3-D model of a perennial ryegrass primary cell wall and its enzymatic degradation. Computation, 2(2), 23–46.

[72]

Wei, T., & Simko, V. (2021). package ’corrplot’: Visualization of a correlation matrix [(Version 0.92)]. https://github.com/taiyun/corrplot

[73]

Wilkins, P. W., & Lovatt, J. A. (2011). Gains in dry matter yield and herbage quality from breeding perennial ryegrass. Irish Journal of Agricultural and Food Research, 50, 23–30.

[74]

Workman Jr., J. (2000). The handbook of organic compounds, three-volume set: NIR, IR, R, and UV-Vis spectra featuring polymers and surfactants. Elsevier.

[75]

Yang, Z., Li, K., Zhang, M., Xin, D., & Zhang, J. (2016). Rapid determination of chemical composition and classification of bamboo fractions using visible–near infrared spectroscopy coupled with multivariate data analysis. Biotechnology for Biofuels, 9(1), 35.

RIGHTS & PERMISSIONS

2025 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

373

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/