Soil organic carbon increase on conversion of native savanna to improved pasture in two regions of Colombia

Sandra Loaiza , Ciniro Costa Jr , Mayesse A. da Silva , Ngonidzashe Chirinda , Idupulapati Rao , Jacobo Arango , Jeimar Tapasco , Glenn Hyman

Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 318 -330.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 318 -330. DOI: 10.1002/glr2.12101
RESEARCH ARTICLE

Soil organic carbon increase on conversion of native savanna to improved pasture in two regions of Colombia

Author information +
History +
PDF

Abstract

Background: There is limited knowledge on how to increase soil organic carbon (SOC) stocks under tropical conditions. This study investigates SOC changes after converting land from native savanna (NS) to improved pasture (IP) land use.

Methods: Two acidic soil conversion sites were examined: (i) a poorly drained slope with medium-texture soil (Casanare [CAS]1) and (ii) flat terrain with fine-texture soil (CAS2). Another flat site was evaluated (Atlántico [ATL]), with fine-textured to moderately textured neutral soil. Soil samples were collected and analyzed. SOC stocks (0–60 cm soil depth) were estimated, with a complex analysis of variance analyzing pasture type and soil depth.

Results: NS to IP conversion resulted in significant SOC accumulation in two regions, with losses in one (CAS2). ATL showed higher SOC accumulation than CAS. IP adoption led to SOC accumulation at depth (0–60 cm) after 10 years in CAS1. Elevated clay content in CAS2 favored SOC storage, while poorly drained areas hindered accumulation in CAS1. Cultivating rice before IP at CAS2 likely depleted SOC (0–20 cm), with 4 years of IP not restoring initial levels.

Conclusions: Adopting IP over NS can increase SOC. Grassland type, soil properties, and land-use change all influence SOC accumulation. These data inform sustainable land management for low-emission livestock production.

Keywords

deep-rooted improved grasses / land use change / native savanna / soil carbon accumulation / soil properties

Cite this article

Download citation ▾
Sandra Loaiza, Ciniro Costa Jr, Mayesse A. da Silva, Ngonidzashe Chirinda, Idupulapati Rao, Jacobo Arango, Jeimar Tapasco, Glenn Hyman. Soil organic carbon increase on conversion of native savanna to improved pasture in two regions of Colombia. Grassland Research, 2024, 3(4): 318-330 DOI:10.1002/glr2.12101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdalla, K., Mutema, M., Chivenge, P., Everson, C., & Chaplot, V. (2022). Grassland rehabilitation significantly increases soil carbon stocks by reducing net soil CO2 emissions. Soil Use and Management, 38(2), 1250–1265.

[2]

Álvarez, M., & Rincón, A. (2010). Características agroecológicas de la Orinoquía Colombiana. In A. Rincón & C. Jaramillo (Eds.), Establecimiento, Manejo Y Utilización de Recursos Forrajeros en Sistemas Ganaderos de Suelos Ácidos (p. 252). Corporación Colombiana de investigación agropecuaria (CORPOICA).

[3]

Anderson, J. M. (1991). The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications, 1, 326–347.

[4]

Awah, T. M., Kuitcha, D., Magha, A., Ndjama, J., Kamgang, V., & Kabeyene, B. (2012). Occurrence of macrophytes in the Mezam river system in Bamenda (Cameroon) and their role in nutrient retention. Syllabus Review Science Series, 3, 1–10. https://api.semanticscholar.org/CorpusID:67793527

[5]

Ayarza, M. A., Rao, I., Vilela, L., Lascano, C., & Vera-Infanzón, R. (2022). Soil carbon accumulation in crop-livestock systems in acid soil savannas of South America: A review. Advances in Agronomy, 173, 163–226.

[6]

Balcázar, I. G. (2010). Física de suelo. In H. En, Y. Burbano, & F. Silva (Eds.), CIENCIA DEL SUELO principios básicos (pp. 154–155). Sociedad Colombiana de la ciencia de Suelo.

[7]

Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163.

[8]

Batjes, N. H. (2019). Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degradation & Development, 30, 25–32.

[9]

Batjes, N. H., & Sombroek, W. G. (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 3(2), 161–173.

[10]

Chirinda, N., Elsgaard, L., Thomsen, I. K., Heckrath, G., & Olesen, J. E. (2014). Carbon dynamics in topsoil and subsoil along a cultivated toposequence. Catena, 120, 20–28.

[11]

Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52, 345–353.

[12]

CIAT. (2015). Clima y Sector Agropecuario Colombiano–Componente Ganadería.

[13]

Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 11(2), 343–355.

[14]

Contreras-Santos, J. L., Falla-Guzmán, C. K., Rodríguez, J. L., Fernando-Garrido, J., Martínez-Atencia, J., & Aguayo-Ulloa, L. (2023). Reserva de carbono en sistemas silvopastoriles: Un estudio en el Medio Sinú Colombia. Agronomía Mesoamericana, 34, 49138.

[15]

Corbeels, M., Marchão, R. L., Neto, M. S., Ferreira, E. G., Madari, B. E., Scopel, E., & Brito, O. R. (2016). Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Scientific Reports, 6, 21450.

[16]

Costa Jr., C., Corbeels, M., Bernoux, M., Píccolo, M. C., Siqueira Neto, M., Feigl, B. J., Cerri, C. E. P., Cerri, C. C., Scopel, E., & LalR, R. (2013). Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches. Soil and Tillage Research, 134, 207–212.

[17]

Costa Jr., C., Villegas, D. M., Bastidas, M., Matiz-Rubio, N., Rao, I., & Arango, J. (2022). Soil carbon stocks and nitrous oxide emissions of pasture systems in Orinoquía region of Colombia: Potential for developing land-based greenhouse gas removal projects. Frontiers in Climate, 4, 916068.

[18]

Costa, C., Wollenberg, E., Benitez, M., Newman, R., Gardner, N., & Bellone, F. (2022). Roadmap for achieving net-zero emissions in global food systems by 2050. Scientific Reports, 12(1), 15064.

[19]

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988–995.

[20]

Dlamini, P., Chivenge, P., & Chaplot, V. (2016). Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agriculture, Ecosystems & Environment, 221, 258–269.

[21]

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Global Change Biology, 17(4), 1658–1670.

[22]

Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.

[23]

Drewry, J. J., Parkes, R., & Taylor, M. D. (2017). Soil quality and trace elements for land uses in the Wellington region and implications for farm management. In L. D. Currie & M. J. Hedley (Eds.), Science and policy: Nutrient management challenges for the next generation, 12 p. Occasional Report No. 30. Fertilizer and Lime Research Centre, Massey University. http://flrc.massey.ac.nz/publications.html

[24]

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781–1796.

[25]

Eswaran, H., Van den Berg, E., & Reich, P. (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192–194.

[26]

Fearnside, P. M., & Imbrozio Barbosa, R. (1998). Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 108(1–2), 147–166.

[27]

Federación Colombiana de Ganaderos (FEDEGAN). (2022). Estadísticas generales. https://www.fedegan.org.co/estadisticas/general

[28]

Fisher, M. J., Braz, S. P., Dos Santos, R. S. M., Urquiaga, S., Alves, B. J., & Boddey, R. M. (2007). Another dimension to grazing systems: Soil carbon. Tropical Grasslands, 41, 65–83. https://hdl.handle.net/10568/43186

[29]

Fisher, M. J., Kerridge, P. C. (1996). The agronomy and physiology of Brachiaria species. In J. W. Miles, B. L. Maass, C. B. do Valle, & V. Kumble (Eds.), Brachiaria: Biology, agronomy, and improvement (pp. 43–52). Centro Internacional de Agricultura Tropical (CIAT), Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Centro Nacional de Pesquisa de Gado de Corte (CNPGC).

[30]

Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., & Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature, 371, 236–238.

[31]

Fornara, D. A., & Tilman, D. (2009). Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology, 90(2), 408–418.

[32]

Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, part 1. Physical and mineralogical methods. agronomy monograph No. 9 (2nd ed, pp. 383–411). American Society of Agronomy/Soil Science Society of America.

[33]

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/i3437e/i3437e.pdf

[34]

Grace, J., José J. S., Miranda, H. S., & Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33, 387–400.

[35]

Gregory, P. (2008). Plant roots: Growth, activity and interaction with soils. John Wiley & Sons.

[36]

Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8(4), 345–360.

[37]

Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlik, P., de Boef, I., & Gerber, P. J. (2016). Livestock and the environment: What have we learned in the past decade? Annual Review of Environment and Resources, 41, 177–202.

[38]

Hyman, G., Castro, A., Da Silva, M., Arango, M., Bernal, J., Pérez, O., & Rao, I. M. (2022). Soil carbon storage potential of acid soils of Colombia’s Eastern High Plains. Frontiers in Sustainable Food Systems, 6, 954017.

[39]

Instituto Colombiano Agropecuario, (ICA). (2024). https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

[40]

Instituto Geográfico Agustín Codazzi (IGAC) (Ed). (2006). Métodos Analíticos del Laboratorio de Suelos (6th ed).

[41]

Jagadamma, S., & Lal, R. (2010). Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Biology and Fertility of Soils, 46, 543–554.

[42]

Janisch, J. E., & Harmon, M. E. (2002). Successional changes in live and dead wood carbon stores: Implications for net ecosystem productivity. Tree Physiology, 22, 77–89.

[43]

Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.

[44]

Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S., & Thornton, P. E. (2003). Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology, 9, 510–524.

[45]

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68.

[46]

Maia, S. M. F., Ogle, S. M., Cerri, C. E. P., & Cerri, C. C. (2009). Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149(1–2), 84–91.

[47]

Martín-López, J. M., Verchot, L. V., Martius, C., & da Silva, M. (2023). Modeling the spatial distribution of soil organic carbon and carbon stocks in the casanare flooded savannas of the Colombian Llanos. Wetlands, 43, 65.

[48]

McLean, E. O. (1982). Soil pH and lime requirement (2nd ed). American Society of Agronomy, Inc.

[49]

Mendiburu, F. (2023). Agricolae: Statistical procedures for agricultural research (Version 1.3-7) [Software]. CRAN. https://CRAN.R-project.org/package=agricolae

[50]

Meriño-Gergichevich, C., Alberdi, M., Ivanov, A. G., & Reyes-Díaz, M. (2010). Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. Journal of Soil Science and Plant Nutrition, 10(3), 217–243. https://doi.org/10.4067/S0718-95162010000100003

[51]

Miquilini, M., Ribeiro, R., & Chiavegato, M. (2022). Effects of flooding on grazed pastures: Forage quality, GHG emissions and C stocks. Journal of Animal Science, 100(Suppl. 3), 85–86.

[52]

Nair, R., Mehta, C. R., & Sharma, S. (2015). Carbon sequestration in soils—A review. Agricultural Reviews, 36(2), 81–99.

[53]

Orgill, S. E., Condon, J. R., Kirkby, C. A., Orchard, B. A., Conyers, M. K., Greene, R. S. B., & Murphy, B. W. (2017). Soil with high organic carbon concentration continues to sequester carbon with increasing carbon inputs. Geoderma, 285, 151–163.

[54]

Peñuela, L., Fernández, A. P., Castro, F., & Ocampo, A. (2011). Uso y manejo de forrajes nativos en la sabana inundable de la Orinoquia. Convenio de cooperación interinstitucional entre The Nature Conservancy (TNC) y la Fundación Horizonte Verde (FHV), con el apoyo de la Fundación Biodiversidad de España y la Corporación Autónoma Regional de la Orinoquia (Corporinoquia). Fundación Horizonte Verde.

[55]

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41.

[56]

Presa Libre. (2024). Casanare es el cuarto departamento en cabezas de ganado a nivel nacional. https://prensalibrecasanare.com/casanare/51134-casanare-es-el-cuarto-departamento-en-cabezas-de-ganado-a-nivel-nacional.html

[57]

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

[58]

Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. International Journal of Molecular Sciences, 19(10), 3073.

[59]

Rao, I., Rippstein, G., Escobar, G., & Ricaurte, J. (2001). Producción de biomasa vegetal epígea e hipógea en las Sabanas nativas. En: Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. CIAT, CIRAD.

[60]

Rao, I. M. (1998). Root distribution and production in native and introduced pastures in the South American savannas. In J. E. Box (Ed.), Root demographics and their efficiencies in sustainable agriculture, grasslands, and forest ecosystems (pp. 19–42). Kluwer Academic Publishers.

[61]

Rao, I. M. (2014). Advances in improving adaptation of common bean and Brachiaria forage grasses to abiotic stresses in the tropics. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (3rd ed, pp. 847–889). CRC Press, Taylor and Francis Group.

[62]

Rao, I. M., Kerridge, P. C., & Macedo, M. (1996). Nutritional requirements of Brachiaria and adaptation to acid soils. In J. W. Miles, B. L. Maass, & C. B. Valle (Eds.), The biology, agronomy, and improvement of brachiaria (pp. 53–71). CIAT.

[63]

Rao, I. M., Plazas, C., & Ricaurte, J. (2001). Root turnover and nutrient cycling in native and introduced pastures in tropical savannas. In W. J. Horst, M. K. Schenk, A. Burkert, N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, H.-W. Olfs, V. Romheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. V. Wiren, & L. Wittenmayer (Eds.), Plant nutrition: Food security and sustainability of agroecosystems through basic and applied research (pp. 976–977). Kluwer Academic Publishers.

[64]

Rodríguez-Medina, K., Moreno-Casasola, P., & Yañez-Arenas, C. (2017). Efecto de la ganadería y la variación estacional sobre la composición florística y la biomasa vegetal en los humedales de la costa centro oeste del Golfo de México. Acta Botánica Mexicana, 119, 79–99.

[65]

RStudio Team. (2023). RStudio: Integrated development environment for R (Version 2023.9.0.463, Desert Sunflower) [Computer software]. https://www.rstudio.com/

[66]

Schrama, M., Heijning, P., Bakker, J. P., van Wijnen, H. J., Berg, M. P., & Olff, H. (2013). Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 172, 231–243.

[67]

Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229–233.

[68]

Scurlock, J. M. O., Johnson, K., & Olson, R. J. (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8(8), 736–753.

[69]

Silva-Parra, A. (2018). Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana. Orinoquia, 22(2), 158–171.

[70]

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176.

[71]

Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel, J. P., & Chadwick, O. A. (2016). Water balance creates a threshold in soil pH at the global scale. Nature, 540, 567–569.

[72]

SoilGrids. (2024). Version 2.0. powered by SoilGrids and WoSIS. https://www.isric.org/projects/soilgrids

[73]

Sollenberger, L. E., Kohmann, M. M., Dubeux Jr., J. C. B., & Silveira, M. L. (2019). Grassland management affects delivery of regulating and supporting ecosystem services. Crop Science, 59(2), 441–4459.

[74]

Soussana, J. F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., & Arrouays, D. (2004). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20(2), 219–230.

[75]

Teague, W. R., Apfelbaum, S., Lal, R., Kreuter, U. P., Rowntree, J., Davies, C. A., Conser, R., Rasmussen, M., Hatfield, J., Wang, T., Wang, F., & Byck, P. (2016). The role of ruminants in reducing agriculture’s carbon footprint in North America. Journal of Soil and Water Conservation, 71(2), 156–164.

[76]

Thioulouse, J., Chessel, D., Dole’dec, S., & Olivier, J. M. (1997). ADE-4: A multivariate analysis and graphical display software. Statistics and Computing, 7, 75–83.

[77]

Vegetti, A. C. (2002). Caracterización de los sistemas de ramificación en especies de Oryzeae (Poaceae). Candollea, 57(2), 251–260. https://doi.org/10.5169/seals-879345

[78]

Wei, Y., Wei, B., Ryo, M., Bi, Y., Sun, X., Zhang, Y., & Liu, N. (2023). Grazing facilitates litter-derived soil organic carbon formation in grasslands by fostering microbial involvement through microenvironment modification. Catena, 232, 107389.

[79]

Wu, Z., Chen, Y., Zhu, Y., Feng, X., Ou, J., Li, G., Tong, Z., & Yan, Q. (2023). Mapping soil organic carbon in floodplain farmland: Implications of effective range of environmental variables. Land, 12(6), 1198.

[80]

Zaffar, M., & Lu, S. G. (2015). Pore size distribution of clayey soils and its correlation with soil organic matter. Pedosphere, 25, 240–249.

[81]

Zhang, C., Xia, B., & Lin, J. (2016). A Basin-scale estimation of carbon stocks of a forest ecosystem characterized by spatial distribution and contributive features in the Liuxihe River Basin of Pearl River Delta. Forest, 7, 2–18.

[82]

Zhong, Z., Chen, Z., Xu, Y., Ren, C., Yang, G., Han, X., Ren, G., & Feng, Y. (2018). Relationship between soil organic carbon stocks and clay content under different climatic conditions in central China. Forest, 9, 2–14.

[83]

Ziter, C., & MacDougall, A. S. (2013). Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 94, 106–116.

RIGHTS & PERMISSIONS

2024 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/