Yield, silage quality, and feeding preference of late-summer sown pearl millet (Cenchrus americanus (L.) Morrone) in Southern Kyushu

Genki Ishigaki , Mitsuhiro Niimi , Hikaru Shigedomi , Yuuto Sasaki , Sachiko Idota , Yasuyuki Ishii

Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 364 -372.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (4) : 364 -372. DOI: 10.1002/glr2.12096
RESEARCH ARTICLE

Yield, silage quality, and feeding preference of late-summer sown pearl millet (Cenchrus americanus (L.) Morrone) in Southern Kyushu

Author information +
History +
PDF

Abstract

Background: Pearl millet is characterized by its high dry matter (DM) yields with a high moisture content, which makes it difficult to process as silage.

Methods: Pearl millet was sown in mid-September for 3 years to examine its growth, DM yields in early December, and decrease in DM percentage after frost exposure. The crop was processed as round-bale silage to assess silage quality and preference by breeding beef cattle.

Results: Plants reached a height of 160–200 cm, with heading tiller percentages of 50%–70% in early December. With frost exposure, DM percentage increased in leaves and panicles, followed by stems, reaching over 40%, 1 month after exposure. These increases were positively correlated with cumulative frost exposure. After frost exposure, in vitro DM digestibility and crude protein content declined while acid detergent fiber content increased. Repeated cafeteria feeding experiments showed a reduced preference for either pearl millet silage or Italian ryegrass hay. The silage showed moderate acidity at pH 4.73–5.40, with lactic acid at 0.58%–1.62% DM, acetic acid at 0.03%–0.10% DM, and negligible butyric acid, indicating a satisfactory quality.

Conclusions: In Southern Kyushu, pearl millet sown in late summer can be processed into low-moisture round-bale silage in January, the year following sowing.

Keywords

dry matter yield / foggage / late summer sowing / pearl millet / preference / silage quality

Cite this article

Download citation ▾
Genki Ishigaki, Mitsuhiro Niimi, Hikaru Shigedomi, Yuuto Sasaki, Sachiko Idota, Yasuyuki Ishii. Yield, silage quality, and feeding preference of late-summer sown pearl millet (Cenchrus americanus (L.) Morrone) in Southern Kyushu. Grassland Research, 2024, 3(4): 364-372 DOI:10.1002/glr2.12096

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amodu, J. T., Adeyinka, I. A., Kallah, M. S., & Alawa, J. P. (2007). Evaluation of pearl millet accessions for yield and nutrient composition. Journal of Biological Sciences, 7(2), 379–383.

[2]

Amodu, J. T., Kallah, M. S., Onifade, O. S., Omokanye, A. T., & Adeyinka, I. A. (2001). The effect of harvesting at different growth stages on yield and quality of three late-maturing pearl millet accessions in northern Nigeria. Tropical Grasslands, 35(3), 175–179.

[3]

Amuda, A. J., Falola, O. O., & Tukura, D. M. (2019). Assessment of ensiled pearl millet stover with or without legumes stover for quality and acceptability by West African dwarf goat. Nigerian Journal of Animal Production, 46(5), 155–162.

[4]

Arakawa, A. (2021). Trait and dry matter productivity of Italian ryegrass new variety ‘Kyushu 1’ in Kyushu-Okinawa region. Japanese Journal of Grassland Science, 67(1), 35–40.

[5]

Barker, S. B., & Summerson, W. H. (1941). The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry, 138(2), 535–554.

[6]

Van den Berg, J., Britz, C., & du Plessis, H. (2021). Maize yield response to chemical control of Spodoptera frugiperda at different plant growth stages in South Africa. Agriculture, 11(9), 826.

[7]

Bernardes, T. F., Daniel, J. L. P., Adesogan, A. T., McAllister, T. A., Drouin, P., Nussio, L. G., Huhtanen, P., Tremblay, G. F., Bélanger, G., & Cai, Y. (2018). Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 101(5), 4001–4019.

[8]

Crookston, B., Blaser, B., Darapuneni, M., & Rhoades, M. (2020). Pearl millet forage water use efficiency. Agronomy, 10(11), 1672.

[9]

Fonnesbeck, P. V., De Hernandez, M. M. G., Kaykay, J. M., & Saiady, M. Y. (1986). Estimating yield and nutrient losses due to rainfall on field-drying alfalfa hay. Animal Feed Science and Technology, 16(1–2), 7–15.

[10]

Food and Agriculture Organization of the United Nations (FAO). (2023). In brief to the state of food and agriculture 2023. Revealing the true cost of food to transform agrifood systems. https://www.fao.org/documents/card/en/c/cc7937en

[11]

Goto, I., & Minson, D. J. (1977). Prediction of the day matter digestibility of tropical grasses using a pepsin-cellulase assay. Animal Feed Science and Technology, 2(3), 247–253.

[12]

Goto, M., Nishijima, A., & Morita, O. (1988). Comparisons of nutritive values between sorghum silage and foggage. The Japanese Journal of Zootechnical Science, 59(6), 541–547.

[13]

Harper, M. T., Oh, J., Giallongo, F., Lopes, J. C., Weeks, H. L., Faugeron, J., & Hristov, A. N. (2016). Short communication: Preference for flavored concentrate premixes by dairy cows. Journal of Dairy Science, 99(8), 6585–6589.

[14]

Idota, S., Ohara, M., Kodani, R., Hongou, Y., Tobisa, M., Ishii, Y., Nishimura, K., & Arima, N. (2018). Agronomic traits of high-yielding sorghum (Sorghum bicolor). In Proceedings of the 7th Japan-China-Korea Grassland Conference (pp. 210–211).

[15]

Ishigaki, G., Idota, S., & Ishii, Y. (2022). Investigation on spraying percentage of droplets at leaves and panicles using several pesticide spraying methods in several growth stages of maize (Zea mays L.). Japanese Journal of Grassland Science, 67(4), 183–188. https://doi.org/10.14941/grass.67.183

[16]

Ishii, Y., Ito, K., & Numaguchi, H. (1996). Effects of foggage storage period from autumn to winter on the spring regrowth of summer-seeded sorghum (Sorghum bicolor Moench). Journal of Japanese Society of Grassland Science, 42(2), 108–116.

[17]

Japan Grassland Farming Forage Seed Association (JGFFSA). (2009). Guide book for quality evaluation of forage (pp. 64–78). Japan Society of Grassland Science.

[18]

Japan Meteorological Observatory. (2024). Past meteorological record. https://www.data.jma.go.jp/stats/etrn/index.php

[19]

Kingra, P. K., & Kaur, H. (2017). Microclimatic modifications to manage extreme weather vulnerability and climatic risks in crop production. Journal of Agricultural Physics, 17(1), 1–15.

[20]

Lauriault, L. M., Schmitz, L. H., Cox, S. H., & Scholljegerdes, E. J. (2021). A comparison of pearl millet and sorghum–sudangrass pastures during the frost-prone autumn for growing beef cattle in semiarid region. Agriculture, 11(6), 541.

[21]

Li, B., Ishii, Y., Idota, S., Tobisa, M., Niimi, M., Yang, Y., & Nishimura, K. (2019). Yield and quality of forages in a triple cropping system in Southern Kyushu, Japan. Agronomy, 9(6), 277.

[22]

Li, B., Ishii, Y., Idota, S., Yang, Y., & Niimi, M. (2020). Growth and yield potentials of pearl millet (Pennisetum typhoides) under different sowing dates in Southern Kyushu, Japan. Wulfenia Journal, 27(3), 67–80.

[23]

Li, T., Peng, L., Wang, H., Zhang, Y., Wang, Y., Cheng, Y., & Hou, F. (2022). Multi-cutting improves forage yield and nutritional value and maintains the soil nutrient balance in a rainfed agroecosystem. Frontiers in Plant Science, 13, 825117.

[24]

Liu, M.-Z., & Osborne, C. P. (2008). Leaf cold acclimation and freezing injury in C3 and C4 grasses of the Mongolian Plateau. Journal of Experimental Botany, 59(15), 4161–4170.

[25]

Manetti Filho, J., Oliveira, C. M. G., Caramori, P. H., Nagashima, G. T., & Hernandez, F. B. T. (2018). Cold tolerance of forage plant species. Semina: Ciências Agrárias, 39(4), 1469–1476.

[26]

Masaki, Y. (2021). First and last frost date determinations based on meteorological observations in Japan: Trend analysis and estimation scheme construction. Theoretical and Applied Climatology, 145, 411–426.

[27]

Morales, J. U., Alatorre, J. A. H., Escalante, A. A., Lopez, S. B., Vazquez, H. G., & Gomez, M. O. D. (2011). Nutritional characteristics of silage and hay of pearl millet at four phenological stages. Journal of Animal and Veterinary Advances, 10(11), 1378–1382.

[28]

Niimi, M., Ishibashi, M., & Kawamura, O. (2012). Degradation of cell wall constituents of Setaria (Setaria sphacelata (Schumach) Stapf et Hubb.) silage. In Proceedings of the 4th Japan-China-Korea Grassland Conference (pp. 180–181).

[29]

Rahman, M. M., Yamamoto, M., Niimi, M., & Kawamura, O. (2008). Effect of nitrogen fertilization on oxalate content in rhodesgrass, guineagrass and sudangrass. Asian-Australasian Journal of Animal Sciences, 21(2), 214–219.

[30]

Santos, R. D., Neves, A. L. A., Pereira, L. G. R., Sollenberger, L. E., Muniz, E. N., Souza, E. Y. B., Sobral, A. J. S., Costa, N. V., & Gonçalves, L. C. (2020). Performance, agronomic traits, ensilability and nutritive value of pearl millet cultivar harvested at different growth stages. The Journal of Agricultural Science, 158(3), 225–232.

[31]

Sato, H. (2021). Evaluation of root lodging and stalk breaking of maize. Japanese Journal of Grassland Science, 66(4), 229–232.

[32]

Tsukiboshi, T. (2022). Blast disease of ryegrass in Japan: The characteristics, geographical distribution, and control by fungicide coated seeds. Japan International Research Center for Agricultural Sciences (JARQ), 56(4), 313–320.

[33]

Uemura, M., Tominaga, Y., Nakagawara, C., Shigematsu, S., Minami, A., & Kawamura, Y. (2006). Responses of the plasma membrane to low temperatures. Physiologia Plantarum, 126(1), 81–89.

[34]

De Villiers, J., Dugmore, T., Botha, W., & Wandrag, J. (2002). The value of kikuyu foggage for overwintering dry ewes. South African Journal of Animal Science, 32(1), 7–13.

[35]

Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30(3), 515–527.

[36]

Yang, Y., Li, B. K., Idota, S., & Ishii, Y. (2016). Forage quality of triple maize crops with winter barley in Kyushu, Japan. Asian Journal of Crop Science, 9(1), 1–10.

[37]

Yeh, C. S. (1966). Rapid micro-determination of nitrogen by the Dumas method. Microchemical Journal, 11(2), 229–236.

[38]

Zou, G., & Wang, Q. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8, 10149.

RIGHTS & PERMISSIONS

2024 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/