Effect of fermented total mixed rations on rumen microbial communities and serum metabolites in lambs

Mingjian Liu , Yulan Zhang , Yichao Liu , Yuyu Li , Zhijun Wang , Gentu Ge , Yushan Jia , Shuai Du

Grassland Research ›› 2024, Vol. 3 ›› Issue (3) : 249 -263.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (3) : 249 -263. DOI: 10.1002/glr2.12095
RESEARCH ARTICLE

Effect of fermented total mixed rations on rumen microbial communities and serum metabolites in lambs

Author information +
History +
PDF

Abstract

Background: Diet regulates rumen microbiota, which in turn affects animal health. The present study evaluated the response of rumen microbiota and the immune system of lambs to a fermented total mixed ration diet.

Methods: A total of 30 lambs were assigned into two groups: a group fed an unfermented high-fiber diet (total mixed ration [TMR]) and a group fed an fermented low-fiber diet (fermented TMR [FTMR]).

Results: The results showed that FTMR markedly (p < 0.05) increased average daily gain and dry matter intake compared to TMR. The FTMR diet increased the relative abundance of Veillonellaceae_UCG-001 and decreased the diversity of undesirable microbiota despite stable overall microbial community diversity. Serum metabolomic analysis combined with enrichment analysis showed that serum metabolites were affected by the FTMR and metabolic pathways, and the FTMR diet significantly (p < 0.05) influenced amino acid metabolism of lambs. There was a decrease in inflammatory factors in the FTMR treatment, indicating that inflammatory factors followed the same trajectory as changes in microbial community structure and function.

Conclusions: Overall, the FTMR diet reduced undesirable microbiota diversity, thereby regulating host amino acid metabolism and improving immune status.

Keywords

fermented total mixed ration / immune status / rumen microbiota / serum metabolome

Cite this article

Download citation ▾
Mingjian Liu, Yulan Zhang, Yichao Liu, Yuyu Li, Zhijun Wang, Gentu Ge, Yushan Jia, Shuai Du. Effect of fermented total mixed rations on rumen microbial communities and serum metabolites in lambs. Grassland Research, 2024, 3(3): 249-263 DOI:10.1002/glr2.12095

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, J. R., Carroll, I., Azcarate-Peril, M. A., Rochette, A. D., Heinberg, L. J., Peat, C., Steffen, K., Manderino, L. M., Mitchell, J., & Gunstad, J. (2017). A preliminary examination of gut microbiota, sleep, and cognitive flexibility in healthy older adults. Sleep Medicine, 38, 104–107.

[2]

AOAC. (1995). Official methods of analysis; association of official analytical chemists.

[3]

Arshad, M. A., Hassan, F., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883–895.

[4]

Askari, F., Rashidkhani, B., & Hekmatdoost, A. (2014). Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutrition Research, 34(2), 143–148.

[5]

Azad, E., Fehr, K. B., Derakhshani, H., Forster, R., Acharya, S., Khafipour, E., McGeough, E., & McAllister, T. A. (2020). Interrelationships of fiber-associated anaerobic fungi and bacterial communities in the rumen of bloated cattle grazing alfalfa. Microorganisms, 8(10), 1543.

[6]

Bach, A., Elcoso, G., Escartín, M., Spengler, K., & Jouve, A. (2023). Modulation of milking performance, methane emissions, and rumen microbiome on dairy cows by dietary supplementation of a blend of essential oils. Animal, 17(6), 100825.

[7]

Bailey, M. A., Thompson, S. V., Mysonhimer, A. R., Bennett, J. N., Vanhie, J. J., De Lisio, M., Burd, N. A., Khan, N. A., & Holscher, H. D. (2023). Dietary fiber intake and fecal short-chain fatty acid concentrations are associated with lower plasma lipopolysaccharide-binding protein and inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 324(5), G369–G377.

[8]

Catanesi, M., Brandolini, L., d’Angelo, M., Benedetti, E., Tupone, M. G., Alfonsetti, M., Cabri, E., Iaconis, D., Fratelli, M., Cimini, A., Castelli, V., & Allegretti, M. (2021). L-methionine protects against oxidative stress and mitochondrial dysfunction in an in vitro model of Parkinson’s disease. Antioxidants, 10, 1467.

[9]

Chaosap, C., Lukkananukool, A., Polyorach, S., Sommart, K., Sivapirunthep, P., & Limsupavanich, R. (2022). Effects of dietary energy density in a fermented total mixed ration formulated with different ratios of rice straw and cassava pulp on 2- or 14-day-aged meat quality, collagen, fatty acids, and ribonucleotides of native Thai cattle longissimus muscle. Foods, 11, 2046.

[10]

Chen, H., Guo, B., Yang, M., Luo, J., Hu, Y., Qu, M., & Song, X. (2021). Response of growth performance, blood biochemistry indices, and rumen bacterial diversity in lambs to diets containing supplemental probiotics and Chinese medicine polysaccharides. Frontiers in Veterinary Science, 8, 681389.

[11]

Clemmons, B. A., Campbell, M. A., Schneider, L. G., Grant, R. J., Dann, H. M., Krawczel, P. D., & Myer, P. R. (2020). Effect of stocking density and effective fiber on the ruminal bacterial communities in lactating Holstein cows. Peer Journal, 8, e9079.

[12]

Deng, J., Zhang, S., Li, Y., Shi, C., Qiu, X., Cao, B., He, Y., & Su, H. (2023). Effect of potato vine and leaf mixed silage compared to whole corn crops on growth performance, apparent digestibility, and serum biochemical characteristics of fattening angus bull. Animals, 13, 2284.

[13]

Dong, Z., Zhao, J., Chen, S., Bao, Y., Tao, X., Wang, S., Li, J., Liu, Q., & Shao, T. (2020). Effects of different additives on fermentation quality and aerobic stability of a total mixed ration prepared with local feed resources on Tibetan Plateau. Animal Science Journal, 91(1), e13482.

[14]

Dou, X., Yan, D., Ma, Z., Gao, N., & Shan, A. (2022). Sodium butyrate alleviates LPS-induced kidney injury via inhibiting TLR2/4 to regulate rBD2 expression. Journal of Food Biochemistry, 46(7), e14126.

[15]

Du, S., You, S., Sun, L., Wang, X., Jia, Y., & Zhou, Y. (2022). Effects of replacing alfalfa hay with native grass hay in pelleted total mixed ration on physicochemical parameters, fatty acid profile, and rumen microbiota in lamb. Frontiers in Microbiology, 13, 861025.

[16]

Eun, J. S., & Beauchemin, K. A. (2007). Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Animal Feed Science and Technology, 132, 298–315.

[17]

Freer, M., Dove, H., & Nolan, J. V. (2007). Nutrient requirements of domesticated ruminants. CSIRO Publishing.

[18]

Gao, Q., Sun, G., Duan, J., Luo, C., Yangji, C., Zhong, R., Chen, L., Zhu, Y., Wangdui, B., & Zhang, H. (2022). Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 13, 969524.

[19]

Gu, M., Wang, S., Di, A., Wu, D., Hai, C., Liu, X., Bai, C., Su, G., Yang, L., & Li, G. (2023). Combined transcriptome and metabolome analysis of smooth muscle of myostatin knockout cattle. International Journal of Molecular Sciences, 24, 8120.

[20]

Hall, M., & Beiko, R. G. (2018). 16S rRNA gene analysis with QIIME2. Methods in Molecular Biology, 1849, 113–129.

[21]

Hernández, C., Alamilla-Ortiz, Z. L., Escalante, A. E., Navarro-Díaz, M., Carrillo-Reyes, J., Moreno-Andrade, I., & Valdez-Vazquez, I. (2019). Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. International Journal of Hydrogen Energy, 44, 13126–13134.

[22]

Hu, R., Li, S., Diao, H., Huang, C., Yan, J., Wei, X., Zhou, M., He, P., Wang, T., Fu, H., Zhong, C., Mao, C., Wang, Y., Kuang, S., & Tang, W. (2023). The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Frontiers in Immunology, 14, 1095740.

[23]

Huang, Y. W., Lin, C. W., Pan, P., Shan, T., Echeveste, C. E., Mo, Y. Y., Wang, H. T., Aldakkak, M., Tsai, S., Oshima, K., Yearsley, M., Xiao, J., Cao, H., Sun, C., Du, M., Bai, W., Yu, J., & Wang, L. S. (2020). Black raspberries suppress colorectal cancer by enhancing smad4 expression in colonic epithelium and natural killer cells. Frontiers in Immunology, 11, 570683.

[24]

Kedves, O., Kocsubé S., Bata, T., Andersson, M. A., Salo, J. M., Mikkola, R., Salonen, H., Szűcs, A., Kedves, A., Kónya, Z., Vágvölgyi, C., Magyar, D., & Kredics, L. (2021). Chaetomium and Chaetomium-like species from European indoor environments include Dichotomopilus finlandicus sp. nov. Pathogens, 10, 1133.

[25]

Khejornsart, P., Meenongyai, W., & Juntanam, T. (2022). Cassava pulp added to fermented total mixed rations increased tropical sheep’s nutrient utilization, rumen ecology, and microbial protein synthesis. Journal of Advanced Veterinary and Animal Research, 9(4), 754–760.

[26]

Khiaosa-Ard, R., & Zebeli, Q. (2018). Diet-induced inflammation: From gut to metabolic organs and the consequences for the health and longevity of ruminants. Research in Veterinary Science, 120, 17–27.

[27]

Kim, S. H., Alam, M. J., Gu, M. J., Park, K. W., Jeon, C. O., Ha, J. K., Cho, K. K., & Lee, S. S. (2012). Effect of total mixed ration with fermented feed on ruminal in vitro fermentation, growth performance and blood characteristics of Hanwoo steers. Asian-Australasian Journal of Animal Sciences, 25(2), 213–223.

[28]

Li, F., Li, C., Chen, Y., Liu, J., Zhang, C., Irving, B., Fitzsimmons, C., Plastow, G., & Guan, L. L. (2019). Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 7, 92.

[29]

Li, Y., Lan, Y., Zhang, S., & Wang, X. (2022). Comparative analysis of gut microbiota between healthy and diarrheic horses. Frontiers in Veterinary Science, 9, 882423.

[30]

Liu, Q., Li, X., Desta, S. T., Zhang, J., & Shao, T. (2016). Effects of Lactobacillus plantarum and fibrolytic enzyme on the fermentation quality and in vitro digestibility of total mixed rations silage including rape straw. Journal of Integrative Agriculture, 15, 2087–2096.

[31]

Liu, T., Li, F., Xu, J., La, Y., Zhou, J., Zheng, C., & Weng, X. (2023). Transcriptomic analysis reveals that non-forage or forage fiber source promotes rumen development through different metabolic processes in lambs. Animal Biotechnology, 34(4), 1058–1071.

[32]

Liu, Y., Wu, H., Chen, W., Liu, C., Meng, Q., & Zhou, Z. (2022). Rumen microbiome and metabolome of high and low residual feed intake Angus heifers. Frontiers in Veterinary Science, 9, 812861.

[33]

Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., Andersson, A. F., Laudon, H., Lindström, E. S., & Kritzberg, E. S. (2016). Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. The ISME Journal, 10, 533–545.

[34]

Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228–8235.

[35]

Ma, E. H., Bantug, G., Griss, T., Condotta, S., Johnson, R. M., Samborska, B., Mainolfi, N., Suri, V., Guak, H., Balmer, M. L., Verway, M. J., Raissi, T. C., Tsui, H., Boukhaled, G., Henriques da Costa, S., Frezza, C., Krawczyk, C. M., Friedman, A., Manfredi, M., … Jones, R. G. (2017). Serine is an essential metabolite for effector T cell expansion. Cell Metabolism, 25(2), 345–357.

[36]

Machado, M., Serra, C. R., Oliva-Teles, A., & Costas, B. (2021). Methionine and tryptophan play different modulatory roles in the european seabass (Dicentrarchus labrax) innate immune response and apoptosis signaling: An in vitro study. Frontiers in Immunology, 12, 660448.

[37]

Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23, 705–715.

[38]

Mato, J. M., Martínez-Chantar, M. L., & Lu, S. C. (2013). S-adenosylmethionine metabolism and liver disease. Annals of Hepatology, 12(2), 183–189.

[39]

Onarman Umu, Ö. C., Fauske, A. K., Åkesson, C. P., Pérez de Nanclares, M., Sørby, R., Press, C. M., Øverland, M., & Sørum, H. (2018). Gut microbiota profiling in Norwegian weaner pigs reveals potentially beneficial effects of a high-fiber rapeseed diet. PLoS One, 13(12), e0209439.

[40]

Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A., & Hymowitz, S. G. (2011). Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annual Review of Immunology, 29, 71–109.

[41]

Pérez-Cantero, A., & Guarro, J. (2020). Sarocladium and Acremonium infections: New faces of an old opportunistic fungus. Mycoses, 63(11), 1203–1214.

[42]

Prabu, D. L., Ebeneezar, S., Chandrasekar, S., Kalidas, C., Kavitha, M., Vijayagopal, P., Anikuttan, K. K., & Jayakumar, R. (2022). Evaluation of a modified feeding strategy on the growth, metabolism and feeding economics of snubnose pompano Trachinotus blochii (Lacepede, 1801) in a recirculatory system. Animal Feed Science and Technology, 290, 115348.

[43]

Pruss, K. M., Chen, H., Liu, Y., Van Treuren, W., Higginbottom, S. K., Jarman, J. B., Fischer, C. R., Mak, J., Wong, B., Cowan, T. M., Fischbach, M. A., Sonnenburg, J. L., & Dodd, D. (2023). Host-microbe co-metabolism via MCAD generates circulating metabolites including hippuric acid. Nature Communications, 14(1), 512.

[44]

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

[45]

Rahman, M. Z., Haider, N., Gurley, E. S., Ahmed, S., Osmani, M. G., Hossain, M. B., Islam, A., Khan, S. A., Hossain, M. E., Epstein, J. H., Zeidner, N., & Rahman, M. (2018). Epidemiology and genetic characterization of Peste des petits ruminants virus in Bangladesh. Veterinary Medicine and Science, 4(3), 161–171.

[46]

Ren, M., Cai, S., Zhou, T., Zhang, S., Li, S., Jin, E., Che, C., Zeng, X., Zhang, T., & Qiao, S. (2019). Isoleucine attenuates infection induced by E. coli challenge through the modulation of intestinal endogenous antimicrobial peptide expression and the inhibition of the increase in plasma endotoxin and IL-6 in weaned pigs. Food & Function, 10(6), 3535–3542.

[47]

SAS Inc. (2007). SAS OnlineDoc®. 9.1.3 SAS Inc.

[48]

Sehgal, J., Jit, D., Puniya, A., & Singh, K. (2008). Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. Journal of Animal and Feed Sciences, 17, 510–518.

[49]

Shi, J., Lei, Y., Wu, J., Li, Z., Zhang, X., Jia, L., Wang, Y., Ma, Y., Zhang, K., Cheng, Q., Zhang, Z., Ma, Y., & Lei, Z. (2023). Antimicrobial peptides act on the rumen microbiome and metabolome affecting the performance of castrated bulls. Journal of Animal Science and Biotechnology, 14(1), 31.

[50]

Song, H., Lee, J. B., Yi, S., Kim, W. H., Kim, Y., Namgoong, B., Choe, A., Cho, G., Shin, J., Park, Y., Kim, M. S., & Cho, S. (2023). Red ginseng dietary fiber shows prebiotic potential by modulating gut microbiota in dogs. Microbiology Spectrum, 11(4), e0094923.

[51]

Song, J., Ma, Y., Zhang, H., Wang, L., Zhang, Y., & Zhang, G. (2023). Fermented total mixed ration alters rumen fermentation parameters and microbiota in dairy cows. Animals, 13, 1062.

[52]

Strasser, B., Sperner, B., Fuchs, D., & Gostner, J. M. (2017). Mechanisms of inflammation-associated depression: Immune influences on tryptophan and phenylalanine metabolisms. Current Topics in Behavioral Neurosciences, 31, 95–115.

[53]

Sun, C., Song, R., Zhou, J., Jia, Y., & Lu, J. (2023). Fermented bamboo fiber improves productive performance by regulating gut microbiota and inhibiting chronic inflammation of sows and piglets during late gestation and lactation. Microbiology Spectrum, 11(3), e0408422.

[54]

Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7, e40863.

[55]

Turroni, S., Brigidi, P., Cavalli, A., & Candela, M. (2018). Microbiota-host transgenomic metabolism, bioactive molecules from the inside. Journal of Medicinal Chemistry, 61, 47–61.

[56]

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

[57]

Wang, B., & Luo, H. (2021). Effects of mulberry leaf silage on antioxidant and immunomodulatory activity and rumen bacterial community of lambs. BMC Microbiology, 21(1), 250.

[58]

Wang, J., Zhu, G., Sun, C., Xiong, K., Yao, T., Su, Y., & Fang, H. (2020). TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microbial Cell Factories, 19(1), 158.

[59]

Wang, L., Chen, M., Xu, M., Li, J., Feng, P., He, R., Zhu, Y., Li, H., Lin, J., & Zhang, C. (2018). Ratio of creatine kinase to alanine aminotransferase as a biomarker of acute liver injury in dystrophinopathy. Disease Markers, 2018, 6484610.

[60]

Wang, Z., Yin, L., Liu, L., Lan, X., He, J., Wan, F., Shen, W., Tang, S., Tan, Z., & Yang, Y. (2022). Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Frontiers in Veterinary Science, 9, 1004841.

[61]

Wei, Y., Ma, X., Zhao, J., Wang, X., & Gao, C. (2023). Succinate metabolism and its regulation of host-microbe interactions. Gut Microbes, 15(1), 2190300.

[62]

Xie, Y., Wang, L., Li, W., Xu, S., Bao, J., Deng, J., Wu, Z., & Yu, Z. (2022). Fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration silage in response to varying proportion alfalfa silage. Animals, 12, 1039.

[63]

Xu, R., Feng, N., Li, Q., Wang, H., Su, Y., & Zhu, W. (2023). Short-term supplementation of pectin alters substrate dynamics and modulates microbial carbohydrate metabolism in the gut of a pig model. Journal of Agricultural and Food Chemistry, 71(27), 10470–10482.

[64]

Yadav, M., Singh, A., Balan, V., Pareek, N., & Vivekanand, V. (2019). Biological treatment of lignocellulosic biomass by Chaetomium globosporum: Process derivation and improved biogas production. International Journal of Biological Macromolecules, 128, 176–183.

[65]

Zhan, Q., Thakur, K., Feng, J. Y., Zhu, Y. Y., Zhang, J. G., & Wei, Z. J. (2023). LC-MS based metabolomics analysis of okara fermented by Bacillus subtilis DC-15: Insights into nutritional and functional profile. Food Chemistry, 413, 135656.

[66]

Zhang, G., Li, Y., Fang, X., Cai, Y., & Zhang, Y. (2020). Lactation performance, nitrogen utilization, and profitability in dairy cows fed fermented total mixed ration containing wet corn gluten feed and corn stover in combination replacing a portion of alfalfa hay. Animal Feed Science and Technology, 269, 114687.

[67]

Zhang, R., Wei, M., Zhou, J., Yang, Z., Xiao, M., Du, L., Bao, M., Ju, J., Dong, C., Zheng, Y., & Bao, H. (2024). Effects of organic trace minerals chelated with oligosaccharides on growth performance, blood parameters, slaughter performance and meat quality in sheep. Frontiers in Veterinary Science, 11, 1366314.

[68]

Zhao, X. H., Chen, Z. D., Zhou, S., Song, X. Z., Ouyang, K. H., Pan, K., Xu, L. J., Liu, C. J., & Qu, M. R. (2017). Effects of daidzein on performance, serum metabolites, nutrient digestibility, and fecal bacterial community in bull calves. Animal Feed Science and Technology, 225, 87–96.

[69]

Zhao, Y., Yu, S., Li, L., Zhao, H., Li, Y., Jiang, L., & Liu, M. (2023). Feeding citrus flavonoid extracts decreases bacterial endotoxin and systemic inflammation and improves immunometabolic status by modulating hindgut microbiome and metabolome in lactating dairy cows. Animal Nutrition, 13, 386–400.

RIGHTS & PERMISSIONS

2024 The Author(s). Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/