Two-cut system suggested for tall wheatgrass to balance herbage yield and quality in the coastal saline–alkaline land around the Bohai Sea

Wei Li , Qiang Xiao , Hongwei Li , Hao Chang , Qi Zheng , Bin Li , Zhensheng Li

Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 132 -146.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 132 -146. DOI: 10.1002/glr2.12082
RESEARCH ARTICLE

Two-cut system suggested for tall wheatgrass to balance herbage yield and quality in the coastal saline–alkaline land around the Bohai Sea

Author information +
History +
PDF

Abstract

Background: Tall wheatgrass is a perennial salt-tolerant bunchgrass, which is a promising candidate for establishing a “Coastal Grass Belt” in China, particularly in the coastal saline–alkaline soils surrounding the Bohai Sea.

Methods: Seven harvesting treatments were performed to explore the optimal harvesting time and frequency for tall wheatgrass in coastal area. The dry matter yield (DMY) and forage nutritional values were investigated for each cut. The correlation between harvesting time and frequency thereof among the investigated traits was also determined.

Results: The results showed that the two-cut on June 18 and October 29 produced the highest DMY. Another two-cut on May 26 and October 29 produced a relatively high crude protein (CP) yield. The DMY, contents of neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude cellulose (CC) as well as CP yield were positively correlated to plant height, while the CP content and the relative feed value (RFV) were negatively correlated to plant height. The accumulating growing degree days, accumulated precipitation, and sunshine duration were positively correlated with plant height, DMY, contents of NDF, ADF, and CC as well as CP yield, but negatively correlated with CP content and RFV for the first cut.

Conclusions: The two-cut treatment at the end of May and October may be suitable for tall wheatgrass in the “Coastal Grass Belt” targeted area.

Keywords

Coastal Grass Belt / Elytrigia elongata / saline and alkaline soils / tall wheatgrass / Thinopyrum ponticum

Cite this article

Download citation ▾
Wei Li, Qiang Xiao, Hongwei Li, Hao Chang, Qi Zheng, Bin Li, Zhensheng Li. Two-cut system suggested for tall wheatgrass to balance herbage yield and quality in the coastal saline–alkaline land around the Bohai Sea. Grassland Research, 2024, 3(2): 132-146 DOI:10.1002/glr2.12082

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agnusdei, M. G., Assuero, S. G., Grecco, R. C., Cordero, J. J., & Burghi, V. H. (2007). Influence of sward condition on leaf tissue turnover in tall fescue and tall wheatgrass swards under continuous grazing. Grass & Forage Science, 62(1), 55–65.

[2]

Andrioli, R. J. (2023). Adaptive mechanisms of tall wheatgrass to salinity and alkalinity stress. Grass & Forage Science, 78(1), 23–36.

[3]

Asay, K. H., & Jensen, K. B. (1996). Wheatgrasses. In L. E. Moser, D. R. Buxton, & M. D. Casler (Eds.), Cool-season forage grasses (pp. 691–724). ASA, CSSA, and SSSA.

[4]

Bahrani, M. J., Bahrami, H., & Haghighi, A. A. K. (2010). Effect of water stress on ten forage grasses native or introduced to Iran. Grassland Science, 56(1), 1–5.

[5]

Bazzigalupi, O., Pistorale, S. M., & Andrés, A. N. (2008). Tolerancia a la salinidad durante la germinación de semillas provenientes de poblaciones naturalizadas de agropiro alargado (Thinopyrum ponticum). Ciencia e Investigación Agraria, 35(2), 231–238.

[6]

Bennett, S. J., Barrett-Lennard, E. G., & Colmer, T. D. (2019). Salinity and waterlogging as constraints to saltland pasture production: A review. Agriculture, Ecosystems & Environment, 129(4), 349–360.

[7]

Bernas, J., Moudrý Jr. J., Kopecký M., Konvalina, P., & Štěrba, Z. (2019). Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy, 9(2), 98.

[8]

Bhuiyan, M. S. I., Raman, A., Hodgkins, D. S., Mitchell, D., & Nicol, H. I. (2015). Salt accumulation and physiology of naturally occurring grasses in saline soils in Australia. Pedosphere, 25, 501–511.

[9]

Bhuiyan, M. S. I., Raman, A., Hodgkins, D., Mitchell, D., & Nicol, H. I. (2017). Influence of high levels of Na+ and Cl on ion concentration, growth, and photosynthetic performance of three salt-tolerant plants. Flora, 228, 1–9.

[10]

Borrajo, C. I., Sánchez-moreiras, A. M., & Reigosa, M. J. (2018). Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS One, 13(12), e0209281.

[11]

Borrajo, C. I., Sánchez-Moreiras, A. M., & Reigosa, M. J. (2022). Ecophysiological responses of tall wheatgrass germplasm to drought and salinity. Plants, 11(12), 1548.

[12]

Cao, X., Sun, B., Chen, H., Zhou, J., Song, X., Liu, X., Deng, X., Li, X., Zhao, Y., Zhang, J., & Li, J. (2021). Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 36(3), 336–348. https://doi.org/10.16418/j.issn.1000-3045.20201228002

[13]

Ciria, C. S., Sastre, C. M., Carrasco, J., & Ciria, P. (2020). Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands. Industrial Crops & Products, 146, 112184.

[14]

Csete, S., Stranczinger, S., Szalontai, B., Farkas, Á., Pál, R., Salamon-Albert, É., Kocsis, M., Tóvári, P., Vojtela, T., Dezsö J., Ilona, W., Janowszky, Z., Janowszky, J., & Borhidi, A. (2011). Tall wheatgrass cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a potential energy crop for semi-arid lands of Eastern Europe. In M. Nayeripou (Ed.), Sustainable growth and applications in renewable energy sources (pp. 269–294). IntechOpen.

[15]

Dewey, D. R. (1960). Salt tolerance of twenty-five strains of Agropyron. Agronomy Journal, 52, 631–635.

[16]

Dickeduisberg, M., Laser, H., Tonn, B., & Isselstein, J. (2017). Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for biomass and methane yield than grass provenance. Industrial Crops & Products, 97, 653–663.

[17]

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2, 494–501.

[18]

Douglas, G. B., & Foote, A. G. (1994). Establishment of perennial species useful for soil conservation and as forages. New Zealand Journal of Agricultural Research, 37(1), 1–9.

[19]

Freeman, K. W., Girma, K., Arnall, D. B., Mullen, R. W., Martin, K. L., Teal, R. K., & Raun, W. R. (2007). By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agronomy Journal, 99(2), 530–536.

[20]

Fuller, R. D., Nelson, E. D. P., & Richardson, C. J. (1982). Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments. Journal of Environmental Quality, 11(3), 533–539.

[21]

Gillen, R. L., & Berg, W. A. (2005). Response of perennial cool-season grasses to clipping in the southern plains. Agronomy Journal, 97(1), 125–130.

[22]

Grattan, S. R., Grieve, C. M., Poss, J. A., Robinson, P. H., Suarez, D. L., & Benes, S. E. (2004). Evaluation of salt-tolerant forages for sequential water reuse systems. Agricultural Water Management, 70(2), 109–120.

[23]

Gu, A. (2004). Cultivation of salt-tolerant forage grass—Thinopyrum ponticum. Grassland of China, 26(2), 9. https://doi.org/10.3321/j.issn:1673-5021.2004.02.017

[24]

Guo, Q., Meng, L., Mao, P. C., & Tian, X. X. (2015). Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiologiae Plantarum, 37, 1708.

[25]

Holechek, J. L., Estell, R. E., Kuykendall, C. B., Valdez, R., Cardenas, M., & Nunez-Hernandez, G. (1989). Seeded wheatgrass yield and nutritive quality on New Mexico big sagebrush range. Journal of Range Management, 42(2), 118–122.

[26]

Hou, R., Ouyang, Z., Liu, Z., Lai, J., Sun, Z., Li, Y., Li, H., Li, Z., & Li, J. (2021). “Coastal Grass Belt” as paradigm for grass-based livestock husbandry around Bohai bay. Bulletin of Chinese Academy of Sciences, 36, 652–659. https://doi.org/10.16418/j.issn.1000-3045.20210512001

[27]

Iturralde Elortegui, M. R. M., Berone, G. D., Striker, G. G., Martinefsky, M. J., Monterubbianesi, M. G., & Assuero, S. G. (2020). Anatomical, morphological and growth responses of Thinopyrum ponticum plants subjected to partial and complete submergence during early stages of development. Functional Plant Biology, 47(8), 757–768.

[28]

Jafari, A. A., Anvari, H., Nakhjavan, S., & Rahmani, E. (2010). Effects of phenological stages on yield and quality traits in 22 populations of tall wheatgrass Agropyron elongatum grown in Lorestan, Iran. Journal of Rangeland Science, 1, 9–16.

[29]

Jia, H., Feng, H., Yang, G., Li, H., Fu, S., Li, B., Li, Z., & Zheng, Q. (2022). Establishment and identification of six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430. Theoretical and Applied Genetics, 135(9), 3277–3291.

[30]

Johnson, R. C. (1991). Salinity resistance, water relations, and salt content of crested and tall wheatgrass accessions. Crop Science, 31(3), 730–734.

[31]

Jungers, J. M., Frahm, C. S., Tautges, N. E., Ehlke, N. J., Wells, M. S., Wyse, D. L., & Sheaffer, C. C. (2018). Growth, development, and biomass partitioning of the perennial grain crop Thinopyrum intermedium. Annals of Applied Biology, 172(3), 346–354.

[32]

Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen körpern. Fresenius’ Zeitschrift für Analytische Chemie, 22, 366–382.

[33]

Kopecký M., Mráz, P., Kolář L., Váchalová R., Bernas, J., Konvalina, P., Perná K., Murindangabo, Y., & Menšík, L. (2021). Effect of fertilization on the energy profit of tall wheatgrass and reed canary grass. Agronomy, 11(3), 445.

[34]

Li, H., Li, W., Zheng, Q., Zhao, M., Wang, J., Li, B., & Li, Z. (2023). Salinity threshold of tall wheatgrass for cultivation in coastal saline and alkaline land. Agriculture, 13(2), 337.

[35]

Li, H., & Wang, X. (2009). Thinopyrum ponticum and Th. intermedium: The promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 36(9), 557–565.

[36]

Li, H., Zheng, Q., Li, B., & Li, Z. (2022). Research progress on the aspects of molecular breeding of tall wheatgrass. Science Bulletin, 57(6), 792–801. https://doi.org/10.11983/CBB22152

[37]

Li, H., Zheng, Q., Li, B., Zhao, M., & Li, Z. (2022). Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass. Acta Prataculturae Sinica, 31(5), 190–199. https://doi.org/10.11686/cyxb2021384

[38]

Li, H., Zheng, Q., Wang, J., Sun, H., Zhang, K., Fang, H., Xing, X., Yang, W., Cao, X., & Liu, X. (2023). Industrialization of tall wheatgrass for construction of “Coastal Grass Belt”. Bulletin of Chinese Academy of Sciences, 38(4), 622–631. https://doi.org/10.16418/j.issn.1000-3045.20230206001

[39]

Li, T., Peng, L., Wang, H., Zhang, Y., Wang, Y., Cheng, Y., & Hou, F. (2023). Multiple cutting increases forage productivity and enhances legume pasture stability in a rainfed agroecosystem. Annals of Agricultural Sciences, 68(2), 126–136.

[40]

Li, W., Yin, J., Ma, D., Zheng, Q., Li, H., Wang, J., Zhao, M., Liu, X., & Li, Z. (2023). Acceptable salinity level for saline water irrigation of tall wheatgrass in edaphoclimatic scenarios of the coastal saline–alkaline land around Bohai Sea. Agriculture, 13(11), 2117.

[41]

Liu, Q., Yun, L., Chen, Y., Guo, H., Li, Z., Gao, Z., Wang, J., & Shi, F. (2022). The dynamic analysis of forage yield and interspecific competition in alfalfa-grass mixed pasture. Acta Prataculturae Sinica, 31(3), 181–191. https://doi.org/10.11686/cyxb2020589

[42]

Ma, Z. (1986). An investigation on the economic characteristic and nutrient components of grasses. Chinese Journal of Grassland, 2, 48–51.

[43]

Malinowski, D. P., Hopkins, A. A., Pinchak, W. E., Sij, J. W., & Ansley, R. J. (2003). Productivity and survival of defoliated wheatgrasses in the rolling plains of Texas. Agronomy Journal, 95(3), 614–626.

[44]

Mandic, V., Bijelic, Z., Krnjaja, V., Simic, A., Petricevic, M., Micic, N., & Caro-Petrovic, V. (2018). Effect of harvesting time on forage yield and quality of maize. Biotechnology in Animal Husbandry, 34(3), 345–353.

[45]

Mcguire, P. E., & Dvôrák, J. (1981). High salt tolerance potential in wheatgrasses. Crop Science, 21(5), 702–705.

[46]

Meng, L., Shang, C., Mao, P., Zhang, G., & An, S. (2009). A comprehensive evaluation of salt tolerance for germplasm and materials of Elytrigia at the seedling stage. Acta Prataculturae Sinica, 18(4), 67–74. https://doi.org/10.3321/j.issn:1004-5759.04.010

[47]

Meng, L., Yang, H., Mao, P., & Gao, H. (2011). Assessment of interspecies drought resistance of Elytrigia at the seedling stage. Acta Pratacultural Sinica, 20(5), 34–41. http://cyxb.magtech.com.cn/EN/abstract/abstract2928.shtml

[48]

Moore, J., & Undersander, D. (2002). Relative forage quality: An alternative to relative feed value and quality index. Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium.

[49]

Moser, L. E., Buxton, D. R., & Casler, M. D. (1996). Cool-season forage grasses (p. 841). Agronomy Inc.

[50]

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

[51]

Nazli, R. I., Kusvuran, A., Tansi, V., Ozturk, H. H., & Budak, D. B. (2020). Comparison of cool and warm season perennial grasses for biomass yield, quality, and energy balance in two contrasting semiarid environments. Biomass & Bioenergy, 139, 105627.

[52]

Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with NaHCO3. US Government Printing Office.

[53]

Rév, A., Tóth, B., Solti, Á., Sipos, G., & Fodor, F. (2017). Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics. Plant Physiology and Biochemistry, 118, 627–633.

[54]

Riedell, W. E. (2016). Growth and ion accumulation responses of four grass species to salinity. Journal of Plant Nutrition & Soil Science, 39(14), 2115–2125.

[55]

Rogers, A. L., & Bailey, E. T. (1963). Salt tolerance trials with forage plants in south Western Australia. Australian Journal of Experimental Agriculture & Animal Husbandry, 3, 125–130.

[56]

Roundy, B. A. (1983). Response of basin wildrye and tall wheatgrass seedlings to salination. Agronomy Journal, 75(1), 67–71.

[57]

Ruf, T., & Emmerling, C. (2018). Site-adapted production of bioenergy feedstocks on poorly drained cropland through the cultivation of perennial crops. A feasibility study on biomass yield and biochemical methane potential. Biomass & Bioenergy, 119, 429–435.

[58]

Scordia, D., Papazoglou, E. G., Kotoula, D., Sanz, M., Ciria, C. S., Pérez, J., Maliarenko, O., Prysiazhniuk, O., Von Cossel, M., Greiner, B. E., Lazdina, D., Makovskis, K., Lamy, I., Ciadamidaro, L., Petit-dit-Grezeriat, L., Corinzia, S. A., Fernando, A. L., Alexopoulou, E., & Cosentino, S. L. (2022). Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy, 14(7), 710–734.

[59]

Shahid, S. A., & Al-Shankiti, A. (2013). Sustainable food production in marginal lands—Case of GDLA member countries. International Soil & Water Conservation Research, 1(1), 24–38.

[60]

Shannon, M. C. (1978). Testing salt tolerance variability among tall wheatgrass lines. Agronomy Journal, 70(5), 719–722.

[61]

Shen, Y., Li, Y., Yan, S., & Wang, S. (1999). Salt tolerance of early growth of five grass species in Hexi corridor. Acta Agrestia Sinica, 7(4), 293–299. https://doi.org/10.11733/j.issn.1007-0435.1999.04.006

[62]

Silvia L F., Carolina, M., & Sandra Pitta, A. (2017). Agro-ecological zoning for tall wheatgrass (Thinopyrum ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Archives of Crop Science, 1(1), 10–19.

[63]

Smith, K. F. (1996). Tall wheatgrass (Thinopyrum ponticum (Podp.) Z.W. Liu + R.R.C. Wang): A neglected resource in Australian pasture. New Zealand Journal of Agricultural Research, 39(4), 623–627.

[64]

Smith, K. F., & Kelman, W. M. (2000). Register of Australian herbage plant cultivars: Thinopyrum ponticum (Podp.) (tall wheatgrass) cv. Dundas. Australian Journal of Experimental Agriculture, 40(1), 119–120.

[65]

Soest, P. J. V., & Wine, R. H. (1967). Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of AOAC International, 50(1), 50–55.

[66]

Srivastava, N. (2019). Reclamation of saline and sodic soil through phytoremediation. In V. Shukla & N. Kumar (Eds.), Environmental concerns and sustainable development (pp. 279–306). Springer.

[67]

Steppuhn, H., & Asay, K. (2005). Emergence, height, and yield of tall, NewHy, and green wheatgrass forage crops grown in saline root zones. Canadian Journal of Plant Science, 85(4), 863–875.

[68]

Stroh, J. R., & Law, A. G. (1967). Effects of defoliation on the longevity of stand, dry matter yields and forage quality of tall wheatgrass, Agropyron elongatum (Host) Beauv. Agronomy Journal, 59(5), 432–435.

[69]

Świercz, A., & Zajecka, E. (2018). Using tall wheatgrass Agropyron elongatum L. ‘Bamar’ on growing substrates with sewage sludge and halloysite for degraded land reclamation—Pot experiment. Carpathian Journal of Earth & Environmental Sciences, 13(2), 539–549.

[70]

Temel, S., Keskin, B., Simsek, U., & Yilmaz, I. H. (2015). Performance of some forage grass species in halomorphic soil. Turkish Journal of Field Crops, 20, 131–141.

[71]

Tian, X., Wei, X., Wei, H., Xu, M., & Mao, P. (2022). Comprehensive evaluation of drought tolerance of six forage species at the seedling stage. Arid Zone Research, 39(3), 978–985. https://doi.org/10.13866/j.azr.2022.03.31

[72]

Tóth, Š. (2022). Ligno-cellulose quality and calorific value of Elymus elongatus L. and the novel Secale cereanum tested under central european conditions. Agriculture, 68(4), 155–175.

[73]

Undersander, D. J., & Naylor, C. H. (1987). Influence of clipping frequency on herbage yield and nutrient content of tall wheatgrass. Journal of Range Management, 40, 31–35.

[74]

Vergiev, S. (2019). Tall wheatgrass (Thinopyrum ponticum): Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas. Environments, 6(9), 103.

[75]

Vogel, K. P., & Moore, K. J. (1998). Forage yield and quality of tall wheatgrass accessions in the USDA germplasm collection. Crop Science, 38, 509–512.

[76]

Wang, T., Cao, L., Liu, Z., Yang, Q., Chen, L., Chen, M., & Jing, H. (2022). Forage grass basic biology of constructing Coastal Grass Belt. Chinese Bulletin of Botany, 57, 837–847. https://doi.org/10.11983/CBB22165

[77]

Wang, W., Song, Y., Hu, W., Li, B., Zheng, Q., Li, Z., & Li, H. (2020). Comparison of biomass accumulation related traits in (common wheat × tall wheatgrass) F1 and its parents. Pratacultural Science, 37(9), 1821–1832. https://doi.org/10.11829/j.issn.1001-0629.2020-0001

[78]

Wang, X., Cao, W., Wang, X., Wang, S., Xu, J., Qiao, H., Liang, J., & Ma, Q. (2022). Effects of legume–grass mixtures on soil nutrients and forage yield in desert irrigated area of Hexi corridor. Chinese Journal of Grassland, 44, 40–49.

[79]

Wong, J., Jiang, R., & Su, D. (1998). The accumulation of boron in Agropyron elongatum grown in coal fly ash and sewage sludge mixture. Water, Air, & Soil Pollution, 106, 137–147.

[80]

Xu, M., Wang, Q., Wang, Y., Liu, D., Wang, S., Li, Z., & Zhou, B. (2020). Effects of different salt stress on seed germination and seedling growth of Elytrigia elongata. Chinese Journal of Grassland, 42, 15–20. https://doi.org/10.16742/j.zgcdxb.20190068

[81]

Xu, W., Wang, J., Liu, X., Xie, Q., Yang, W., Cao, X., & Li, Z. (2022). Scientific and technological reasons, contents and corresponding policies of constructing “Coastal Grass Belt”. Bulletin of Chinese Academy of Sciences, 37(2), 238–245. https://doi.org/10.16418/j.issn.1000-3045.20210413001

[82]

Yang, H., Wong, J. W., Yang, Z. M., & Zhou, L. X. (2001). Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Sciences, 13(3), 368–375.

[83]

Zhang, B., Jacobs, B. C., O’Donnell, M., & Guo, J. (2005). Comparative studies on salt tolerance of seedlings for one cultivar of puccinellia (Puccinellia ciliata) and two cultivars of tall wheatgrass (Thinopyrum ponticum). Australian Journal of Experimental Agriculture, 45(4), 391–399.

[84]

Zhang, G., Wang, Z., Gao, H., Na, T., & Guo, D. (2008). Comprehensive evaluation of salt tolerance at seedling stage in Elytrigia accessions. Pratacultural Science, 25, 51–54.

[85]

Zhang, J., Hewitt, T. C., Boshoff, W. H. P., Dundas, I., Upadhyaya, N., Li, J., Patpour, M., Chandramohan, S., Pretorius, Z. A., Hovmøller, M., Schnippenkoetter, W., Park, R. F., Mago, R., Periyannan, S., Bhatt, D., Hoxha, S., Chakraborty, S., Luo, M., Dodds, P., … Lagudah, E. S. (2021). A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nature Communications, 12, 3378.

[86]

Zhang, R., Feng, X., Wu, Y., Sun, Q., Li, J., Li, J., & Liu, X. (2022). Interactive effects of drought and salt stresses on the growth and physiological characteristics of Thinopyrum ponticum. Chinese Journal of Eco-Agriculture, 30(11), 1795–1806. https://doi.org/10.12357/cjea.20220185

[87]

Zhao, S. (1994). High yield and high quality salt-tolerant forage grass–tall wheatgrass. Grassland & Turf, 3, 20–22. https://doi.org/10.13817/j.cnki.cyycp.1994.03.004

RIGHTS & PERMISSIONS

2024 The Authors. Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

608

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/