Grassland management intensity determines root development, soil structure, and their interrelationship: Results of a regional study of Leptosols in the Swabian Alps

Katrin Kuka , Monika Joschko

Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 171 -186.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 171 -186. DOI: 10.1002/glr2.12077
RESEARCH ARTICLE

Grassland management intensity determines root development, soil structure, and their interrelationship: Results of a regional study of Leptosols in the Swabian Alps

Author information +
History +
PDF

Abstract

Background: Soil structure is a key indicator of the functioning of soil processes in grasslands, which is influenced by site conditions and management.

Methods: In this study, we investigated soil structure and its relationship with root growth in 31 Leptosols under different grassland management intensities using X-ray microcomputed tomography. A close relationship between land use intensity, soil structure, and root growth was observed.

Results: Our results show that land use type affects root development and soil structure. Pastures had more developed roots and more structured soils than meadows and mown pastures. However, all pastures were unfertilized, while meadows and mown pastures had both fertilized and unfertilized plots. Although no significant differences were found in the unfertilized plots, sample size was limited. In particular, fertilization negatively affected root growth and soil structure, resulting in significant differences between fertilized and unfertilized grasslands. Mowing frequency also had an effect on soil physics, but to a much lesser extent than fertilization.

Conclusions: Increased land use intensity, characterized by increased fertilization and more frequent mowing, reduces root growth and adversely affects soil structure. Therefore, X-ray microcomputed tomography is a suitable method to investigate the relationship between soil structure and roots in the soil.

Keywords

land use intensity / meadow–mown pasture–pasture / soil structure / root–soil interaction / X-ray microcomputed tomography

Cite this article

Download citation ▾
Katrin Kuka, Monika Joschko. Grassland management intensity determines root development, soil structure, and their interrelationship: Results of a regional study of Leptosols in the Swabian Alps. Grassland Research, 2024, 3(2): 171-186 DOI:10.1002/glr2.12077

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265.

[2]

Amelung, W., Tang, N., Siebers, N., Aehnelt, M., Eusterhues, K., Felde, V. J. M. N. L., Guggenberger, G., Kaiser, K., Kögel-Knabner, I., Klumpp, E., Knief, C., Kruse, J., Lehndorff, E., Mikutta, R., Peth, S., Ray, N., Prechtel, A., Ritschel, T., Schweizer, S. A., … Totsche, K. U. (2023). Architecture of soil microaggregates: Advanced methodologies to explore properties and functions. Journal of Plant Nutrition and Soil Science, 187(1), 17–50.

[3]

Angers, D. A., & Caron, J. (1998). Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry, 42(1), 55–72.

[4]

Bergmann, J., Verbruggen, E., Heinze, J., Xiang, D., Chen, B., Joshi, J., & Rillig, M. C. (2016). The interplay between soil structure, roots, and microbiota as a determinant of plant–soil feedback. Ecology and Evolution, 6(21), 7633–7644.

[5]

Blaser, S. R. G. A., Koebernick, N., Spott, O., Thiel, E., & Vetterlein, D. (2020). Dynamics of localised nitrogen supply and relevance for root growth of Vicia faba (‘Fuego’) and Hordeum vulgare (‘Marthe’) in soil. Scientific Reports, 10(1), 15776.

[6]

Blüthgen, N., Dormann, C. F., Prati, D., Klaus, V. H., Kleinebecker, T., Hölzel, N., Alt, F., Boch, S., Gockel, S., Hemp, A., Müller, J., Nieschulze, J., Renner, S. C., Schöning, I., Schumacher, U., Socher, S. A., Wells, K., Birkhofer, K., Buscot, F., … Weisser, W. W. (2012). A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 13(3), 207–220.

[7]

Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1–2), 3–22.

[8]

Calcagno, V. (2013). glmulti: Model selection and multimodel inference made easy. R Package Version, 1(7), 67.

[9]

Carminati, A., Vetterlein, D., Weller, U., Vogel, H. J., & Oswald, S. E. (2009). When roots lose contact all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Vadose Zone Journal, 8(3), 805–809.

[10]

Cheng, W., & Kuzyakov, Y. (2005). Root effects on soil organic matter decomposition. Roots and Soil Management: Interactions Between Roots and the Soil, 48, 119–143.

[11]

Chenu, C., & Stotzky, G. (2002). Interactions between microbes and soil particles: An overview. In P. M. Huang, J. Berthelin, J. M. Bollag, & N. Senesi (Eds.), Interactions between soil particles and microorganisms: Impact on the terrestrial ecosystem. Wiley.

[12]

Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3–11.

[13]

van Eekeren, N., de Boer, H., Hanegraaf, M., Bokhorst, J., Nierop, D., Bloem, J., Schouten, T., de Goede, R., & Brussaard, L. (2010). Ecosystem services in grassland associated with biotic and abiotic soil parameters. Soil Biology and Biochemistry, 42(9), 1491–1504.

[14]

Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., Korte, G., Nieschulze, J., Pfeiffer, S., Prati, D., Renner, S., Schöning, I., Schumacher, U., Wells, K., Buscot, F., Kalko, E. K. V., Linsenmair, K. E., Schulze, E. D., & Weisser, W. W. (2010). Implementing large-scale and long-term functional biodiversity research: The biodiversity exploratories. Basic and Applied Ecology, 11(6), 473–485.

[15]

Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8, 1–27.

[16]

Franzluebbers, A. J. (2002). Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research, 66(2), 197–205.

[17]

Gilhaus, K., Boch, S., Fischer, M., Hölzel, N., Kleinebecker, T., Prati, D., Rupprecht, D., Schmitt, B., & Klaus, V. H. (2017). Grassland management in Germany: Effects on plant diversity and vegetation composition. Tuexenia, 37, 379–397. https://doi.org/10.14471/2017.37.010

[18]

Goss, M. J., & Kay, B. D. (2005). Soil aggregation. Roots and Soil Management: Interactions Between Roots and the Soil, 48, 163–180.

[19]

Graf, F., & Frei, M. (2013). Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecological Engineering, 57, 314–323.

[20]

Hassink, J., Bouwman, L. A., Zwart, K. B., & Brussaard, L. (1993). Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry, 25(1), 47–55.

[21]

Heijs, A. W. J., de Lange, J., Schoute, J. F. T., & Bouma, J. (1995). Computed tomography as a tool for non-destructive analysis of flow patterns in macroporous clay soils. Geoderma, 64(3–4), 183–196.

[22]

Helliwell, J. R., Sturrock, C. J., Grayling, K. M., Tracy, S. R., Flavel, R. J., Young, I. M., Whalley, W. R., & Mooney, S. J. (2013). Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: A review. European Journal of Soil Science, 64(3), 279–297.

[23]

Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321(1), 153–187.

[24]

Holub, P., Tůma, I., & Fiala, K. (2013). Effect of fertilization on root growth in the wet submontane meadow. Plant, Soil and Environment, 59(8), 342–347.

[25]

Hou, L., Gao, W., der Bom, F., Weng, Z., Doolette, C. L., Maksimenko, A., Hausermann, D., Zheng, Y., Tang, C., Lombi, E., & Kopittke, P. M. (2022). Use of X-ray tomography for examining root architecture in soils. Geoderma, 405, 115405.

[26]

Illerhaus, B., Jasiuniene, E., Goebbels, J., & Loethman, P. (2002). Investigation and image processing of cellular metals with highly resolving 3D microtomography (µCT). In Proceedings SPIE 4503, developments in X-ray tomography III, (7 January 2002); (pp. 201–204).

[27]

Isselstein, J., Jeangros, B., & Pavlu, V. (2005). Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—A review. Agronomy Research, 3(2), 139–151.

[28]

Juma, N. G. (1993). Interrelationships between soil structure/texture, soil biota/soil organic matter and crop production. Geoderma, 57(1–2), 3–30.

[29]

Kuka, K., Illerhaus, B., Fox, C. A., & Joschko, M. (2013). X-ray computed microtomography for the study of the root–soil relationship in grassland soils. Vadose Zone Journal, 12(4), 1–10.

[30]

Kuka, K., Illerhaus, B., Fritsch, G., Joschko, M., Rogasik, H., Paschen, M., & Seyfarth, M. (2013). A new method for the extraction of undisturbed soil samples for X-ray computed tomography. E-Journal of Nondestructive Testing, 18(8), 1–8. https://www.ndt.net/?id=14629

[31]

Leuschner, C., Gebel, S., & Rose, L. (2013). Root trait responses of six temperate grassland species to intensive mowing and NPK fertilisation: A field study in a temperate grassland. Plant and Soil, 373, 687–698.

[32]

Ludvíková V., Pavlů V., Pavlů L., Gaisler, J., & Hejcman, M. (2015). Sward–height patches under intensive and extensive grazing density in an Agrostis capillaris grassland. Folia Geobotanica, 50, 219–228.

[33]

Mayel, S., Jarrah, M., & Kuka, K. (2021). How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass and Forage Science, 76(2), 215–244.

[34]

Mooney, S. J., Pridmore, T. P., Helliwell, J., & Bennett, M. J. (2012). Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil, 352, 1–22.

[35]

Mylona, P., Pawlowski, K., & Bisseling, T. (1995). Symbiotic nitrogen fixation. The Plant Cell, 7(7), 869–885.

[36]

Pagliai, M., & De Nobili, M. (1993). Relationships between soil porosity, root development and soil enzyme activity in cultivated soils. In L. Brussaard & M. J. Kooistra (Eds.), Soil Structure/Soil Biota Interrelationships (pp. 243–256). Elsevier.

[37]

Perret, J. S., Al-Belushi, M. E., & Deadman, M. (2007). Non-destructive visualization and quantification of roots using computed tomography. Soil Biology and Biochemistry, 39(2), 391–399.

[38]

Pierret, A., Capowiez, Y., Moran, C. J., & Kretzschmar, A. (1999). X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma, 90(3–4), 307–326.

[39]

R Core Team. (2021). R: A language and environment for statistical computing. Supplemental information references S (Vol. 1, pp. 371–378). R Foundation for Statistical Computing.

[40]

Reynolds, H. L., & D’Antonio, C. (1996). The ecological significance of plasticity in root weight ratio in response to nitrogen: Opinion. Plant and Soil, 185(1), 75–97.

[41]

Rillig, M. C., Wright, S. F., & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238(2), 325–333.

[42]

Russell, V. L. (2023). emmeans: Estimated marginal means, aka least-squares means. https://CRAN.R-project.org/package=emmeans

[43]

Schmidt, S., Bengough, A. G., Gregory, P. J., Grinev, D. V., & Otten, W. (2012). Estimating root–soil contact from 3D X-ray microtomographs. European Journal of Soil Science, 63(6), 776–786.

[44]

Shi, X., Qin, T., Yan, D., Tian, F., & Wang, H. (2021). A meta-analysis on effects of root development on soil hydraulic properties. Geoderma, 403, 115363.

[45]

Six, J., Elliott, E. T., & Paustian, K. (1999). Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 63(5), 1350–1358.

[46]

Strong, D. T., Wever, H. D., Merckx, R., & Recous, S. (2004). Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science, 55(4), 739–750.

[47]

Tang, Y., Horikoshi, M., & Li, W. (2016). ggfortify: Unified interface to visualize statistical results of popular R packages. The R Journal, 8(2), 474–485.

[48]

Tomaškin, J., Jančovič J., Vozár, Ľ., & Tomaškinová J. (2013). The effect of mineral fertilization on belowground plant biomass of grassland ecosystems. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(5), 1431–1440.

[49]

Tracy, S. R., Black, C. R., Roberts, J. A., McNeill, A., Davidson, R., Tester, M., Samec, M., Korošak, D., Sturrock, C., & Mooney, S. J. (2012). Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray micro computed tomography (CT). Plant and Soil, 353(1–2), 195–208.

[50]

Wickham, H., Chang, W., & Wickham, M. H. (2016). Package “ggplot2”. Create Elegant Data Visualisations Using the Grammar of Graphics. Version, 2(1), 1–189.

[51]

Wieland, R., Ukawa, C., Joschko, M., Krolczyk, A., Fritsch, G., Hildebrandt, T. B., Schmidt, O., Filser, J., & Jimenez, J. J. (2021). Use of deep learning for structural analysis of computer tomography images of soil samples. Royal Society Open Science, 8(3), 201275.

[52]

Zhang, H., He, H., Gao, Y., Mady, A., Filipović V., Dyck, M., Lv, J., & Liu, Y. (2023). Applications of computed tomography (CT) in environmental soil and plant sciences. Soil and Tillage Research, 226, 105574.

[53]

Zhou, H., Whalley, W. R., Hawkesford, M. J., Ashton, R. W., Atkinson, B., Atkinson, J. A., Sturrock, C. J., Bennett, M. J., & Mooney, S. J. (2021). The interaction between wheat roots and soil pores in structured field soil. Journal of Experimental Botany, 72(2), 747–756.

RIGHTS & PERMISSIONS

2024 Julius Kuehn Institute. Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/