Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China

Xiali Yang , Xiaodong Huang , Ying Ma , Yuxin Li , Qisheng Feng , Tiangang Liang

Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 100 -112.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (2) :100 -112. DOI: 10.1002/glr2.12076
RESEARCH ARTICLE

Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China

Author information +
History +
PDF

Abstract

Background: The time-series data of the Normalized Difference Vegetation Index (NDVI) is a crucial indicator for global and regional vegetation monitoring. However, the current assessment of global and regional long-term vegetation changes is subject to large uncertainties due to the lack of spatiotemporally continuous time-series data sets.

Methods: In this study, a long time-series monthly NDVI data set with a spatial resolution of 250m from 1982 to 2020 was developed by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR (Advanced Very High-Resolution Radiometer) time-series NDVI products using the Random Forest (RF) downscaling model.

Results: Compared to the MODIS NDVI product, the fused product shows RMSE and mean absolute error ranging from 0 to 0.075 and from 0 to 0.05, respectively, with R2 values mostly above 0.7.

Conclusions: The long time-series NDVI products generated in this study are reliable in terms of accuracy and have great potential for long-term dynamic monitoring of terrestrial ecosystems on the Qinghai–Tibet Plateau.

Keywords

alpine grassland / long term / machine learning / NDVI

Cite this article

Download citation ▾
Xiali Yang, Xiaodong Huang, Ying Ma, Yuxin Li, Qisheng Feng, Tiangang Liang. Development of long-term spatiotemporal continuous NDVI products for alpine grassland from 1982 to 2020 in the Qinghai–Tibet Plateau, China. Grassland Research, 2024, 3(2): 100-112 DOI:10.1002/glr2.12076

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali, S., Liu, D., Fu, Q., Cheema, M. J. M., Pham, Q. B., Rahaman, M. M., Dang, T. D., & Anh, D. T. (2021). Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment. Remote Sensing, 13(17), 3513.

[2]

An, S., Zhang, X., Chen, X., Yan, D., & Henebry, G. (2018). An exploration of terrain effects on land surface phenology across the Qinghai–Tibet plateau using Landsat ETM+ and OLI data. Remote Sensing, 10(7), 1069.

[3]

An, Y., Gao, W., Gao, Z., Liu, C., & Shi, R. (2015). Trend analysis for evaluating the consistency of Terra MODIS and SPOT VGT NDVI time series products in China. Frontiers of Earth Science, 9(1), 125–136.

[4]

Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., & Rey-Sanchez, C. (2021). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sensing of Environment, 252, 112189.

[5]

Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96(1), 69–83.

[6]

Baghanam, A. H., Eslahi, M., Sheikhbabaei, A., & Seifi, A. J. (2020). Assessing the impact of climate change over the northwest of Iran: An overview of statistical downscaling methods. Theoretical and Applied Climatology, 141(3–4), 1135–1150.

[7]

Bai, Y. (2021). Analysis of vegetation dynamics in the Qinling–Daba Mountains region from MODIS time series data. Ecological Indicators, 129, 108029.

[8]

Bartkowiak, P., Castelli, M., & Notarnicola, C. (2019). Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas. Remote Sensing, 11(11), 1319.

[9]

Cao, C., Weinreb, M., & Xu, H. (2004). Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. Journal of Applied Remote Sensing, 21(4), 537–542.

[10]

Cao, R., Chen, Y., Chen, J., Zhu, X., & Shen, M. (2020). Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sensing of Environment, 249, 112001.

[11]

Chen, F., Liu, Z., Zhong, H., & Wang, S. (2021). Exploring the applicability and scaling effects of satellite-observed spring and autumn phenology in complex terrain regions using four different spatial resolution products. Remote Sensing, 13(22), 4582.

[12]

Cheng, J., Dai, Y., Yuan, Y., & Zhu, H. (2020). A simple analysis of multimodal data fusion. In G. Wang, R. Ko, M. Bhuiyan, & Y. Pan (Eds.), 2020 IEEE 19th international conference on trust, security and privacy in computing and communications (pp. 1472–1475). IEEE.

[13]

Cong, N., Wang, T., Nan, H., Ma, Y., Wang, X., Myneni, R. B., & Piao, S. (2013). Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biology, 19(3), 881–891.

[14]

Cortés, J., Mahecha, M., Reichstein, M., Myneni, R., Chen, C., & Brenning, A. (2021). Where are global vegetation greening and browning trends significant? Global Change Biology, 48(6), e2020GL091496.

[15]

Cui, J., Zhang, X., & Luo, M. (2018). Combining linear pixel unmixing and STARFM for spatiotemporal fusion of gaofen-1 wide field of view imagery and MODIS imagery. Remote Sensing, 10(7), 1047.

[16]

Cui, L., & Shi, J. (2010). Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. Journal of Hydrology, 20(2), 163–176.

[17]

Ding, B., Feng, L., Ba, S., Jiang, X., Liu, G., & Liu, W. (2023). Temperature drives elevational diversity patterns of different types of organisms in Qinghai–Tibetan Plateau wetlands. iScience, 26(8), 107252.

[18]

Ding, M., Li, L., Zhang, Y., Sun, X., Liu, L., Gao, J., Wang, Z., & Li, Y. (2015). Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Hydrology, 25(2), 131–148.

[19]

Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., & Bai, W. (2007). The relationship between NDVI and precipitation on the Tibetan Plateau. Journal of Applied Remote Sensing, 17(3), 259–268.

[20]

Du, J. Q., Shu, J. M., Wang, Y. H., Li, Y. C., Zhang, L. B., & Guo, Y. (2014). Comparison of GIMMS and MODIS normalized vegetation index composite data for Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 25(2), 533–544. https://doi.org/10.13287/j.1001-9332.2014.0056

[21]

Duan, Z., & Bastiaanssen, W. G. M. (2013). First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sensing of Environment, 131, 1–13.

[22]

Faisal, B., Rahman, H., Sharifee, N., Sultana, N., Islam, M., & Ahammad, T. (2019). Remotely sensed boro rice production forecasting using MODIS-NDVI: A Bangladesh perspective. Applied Mechanics and Materials, 1(3), 356–375.

[23]

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S. D., Tucker, C., Scholes, R. J., Le, Q. B., Bondeau, A., Eastman, R., Epstein, H., Gaughan, A. E., Hellden, U., Mbow, C., Olsson, L., Paruelo, J., Schweitzer, C., Seaquist, J., & Wessels, K. (2012). Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121, 144–158.

[24]

Fensholt, R., & Proud, S. R. (2012). Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131–147.

[25]

Fensholt, R., Sandholt, I., & Stisen, S. (2006). Evaluating MODIS, MERIS, and VEGETATION: Vegetation indices using in situ measurements in a semiarid environment. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1774–1786.

[26]

Ge, Y., Jin, Y., Stein, A., Chen, Y., Wang, J., Wang, J., Cheng, Q., Bai, H., Liu, M., & Atkinson, P. (2019). Principles and methods of scaling geospatial Earth science data. Environmental Earth Sciences, 197, 102897.

[27]

Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

[28]

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207–2218.

[29]

Huang, S., Zhang, X., Wang, C., & Chen, N. (2023). Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai–Tibet plateau. International Journal of Remote Sensing, 197, 346–363.

[30]

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.

[31]

Jia, S., Zhu, W., Lu, A., & Yan, T. (2011). A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 115(12), 3069–3079.

[32]

Jiang, L., Tarpley, J. D., Mitchell, K. E., Zhou, S., Kogan, F. N., & Guo, W. (2008). Adjusting for long-term anomalous trends in NOAA’s global vegetation index data sets. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 409–422.

[33]

Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., & Zhang, X. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3), 366–378.

[34]

de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2), 692–702.

[35]

Ju, J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112(3), 1196–1211.

[36]

Karbalaye Ghorbanpour, A., Hessels, T., Moghim, S., & Afshar, A. (2021). Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin. Journal of Hydrology, 596, 126055.

[37]

Ke, Y., Im, J., Park, S., & Gong, H. (2016). Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sensing, 8(3), 215.

[38]

Kerdiles, H., & Grondona, M. O. (1995). NOAA-AVHRR NDVI decomposition and subpixel classification using linear mixing in the Argentinean Pampa. International Journal of Remote Sensing, 16(7), 1303–1325.

[39]

Lan, S., & Dong, Z. (2022). Incorporating vegetation type transformation with NDVI time-series to study the vegetation dynamics in Xinjiang. Science of the Total Environment, 14(1), 582.

[40]

Landman, W. (2010). Climate change 2007: The physical science basis. Science of the Total Environment, 92(1), 86–87.

[41]

van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., & Herrmann, S. M. (2006). Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sensing of Environment, 100(1), 67–81.

[42]

Li, D., Wu, S., Liu, L., Zhang, Y., & Li, S. (2018). Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology, 24(9), 4095–4106.

[43]

Li, M., Cao, S., Zhu, Z., Wang, Z., Myneni, R. B., & Piao, S. (2023). Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth System Science Data, 15(9), 4181–4203.

[44]

Li, P., Hu, Z., & Liu, Y. (2020). Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agricultural and Forest Meteorology, 287, 107950.

[45]

Li, Y., Jiao, Z., Zhao, K., Dong, Y., Zhou, Y., Zeng, Y., Xu, H., Zhang, X., Hu, T., & Cui, L. (2021). Influence of varying solar zenith angles on land surface phenology derived from vegetation indices: A case study in the Harvard Forest. Remote Sensing, 13(20), 4126.

[46]

Lima, C. H. R., Kwon, H.-H., & Kim, Y.-T. (2021). A Bayesian Kriging model applied for spatial downscaling of daily rainfall from GCMs. Journal of Hydrology, 597, 126095.

[47]

Lin, W., Shi, R., & Shi, J. (2008). Compared MODIS-NDVI with MODIS-EVI in forecast crop yield. In G. Li, Z. Jia, & Z. Fu (Eds.), 2008 proceedings of information technology and environmental system sciences (pp. 212–216). WOS.

[48]

Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14), 1729–1742.

[49]

Liu, Y., Jing, W., Wang, Q., & Xia, X. (2020). Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Agricultural and Forest Meteorology, 141, 103601.

[50]

Liu, Y., Li, Z., Chen, Y., Li, Y., Li, H., Xia, Q., & Kayumba, P. M. (2022). Evaluation of consistency among three NDVI products applied to High Mountain Asia in 2000–2015. Remote Sensing of Environment, 269, 112821.

[51]

Lv, J., Zhao, W., Hua, T., Zhang, L., & Pereira, P. (2023). Multiple Greenness Indexes revealed the vegetation greening during the growing season and winter on the Tibetan Plateau despite regional variations. Remote Sensing, 15(24), 5697.

[52]

Ma, C., Xie, Y., Duan, S., Qin, W., Guo, Z., Xi, G., Zhang, X., Bie, Q., Duan, H., & He, L. (2022). Characterization of spatio-temporal patterns of grassland utilization intensity in the Selinco watershed of the Qinghai–Tibetan Plateau from 2001 to 2019 based on multisource remote sensing and artificial intelligence algorithms. GIScience & Remote Sensing, 59(1), 2217–2246.

[53]

Ma, Z., Dong, C., Lin, K., Yan, Y., Luo, J., Jiang, D., & Chen, X. (2022). A global 250-m downscaled NDVI product from 1982 to 2018. Remote Sensing, 14(15), 3639.

[54]

Marshall, M., Okuto, E., Kang, Y., Opiyo, E., & Ahmed, M. (2016). Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products. Bulletin of the American Meteorological Society, 13(3), 625–639.

[55]

Martinez, A. I., & Labib, S. M. (2023). Demystifying Normalized Difference Vegetation Index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research, 220, 115155.

[56]

May, J. L., Parker, T., Unger, S., & Oberbauer, S. F. (2018). Short term changes in moisture content drive strong changes in Normalized Difference Vegetation Index and gross primary productivity in four Arctic moss communities. Remote Sensing of Environment, 212, 114–120.

[57]

Moreno-Martinez, A., Moneta, M., Valls, G. C., Martino, L., Robinson, N., Allred, B., & Running, S. W. (2018). Interpolation and gap filling of landsat reflectance time series. In IGARSS 2018 - 2018 IEEE international geoscience and remote sensing symposium.

[58]

Nagol, J., Vermote, E., & Prince, S. (2014). Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI Data. Remote Sensing, 6(7), 6680–6687.

[59]

Nagol, J. R., Vermote, E. F., & Prince, S. D. (2009). Effects of atmospheric variation on AVHRR NDVI data. Remote Sensing of Environment, 113(2), 392–397.

[60]

Pan, N., Feng, X., Fu, B., Wang, S., Ji, F., & Pan, S. (2018). Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 214, 59–72.

[61]

Pinzon, J., & Tucker, C. (2014). A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sensing, 6(8), 6929–6960.

[62]

Qu, Y., Zhu, Z., Montzka, C., Chai, L., Liu, S., Ge, Y., Liu, J., Lu, Z., He, X., Zheng, J., & Han, T. (2021). Inter-comparison of several soil moisture downscaling methods over the Qinghai–Tibet Plateau, China. Journal of Hydrology, 592, 125616.

[63]

Rodríguez, E., Morris, C. S., & Belz, J. E. (2006). A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249–260.

[64]

Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E., & Arkebauer, T. J. (2010). A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 114(10), 2146–2159.

[65]

Sano, E. E., Ferreira, L. G., Asner, G. P., & Steinke, E. T. (2007). Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing, 28(12), 2739–2752.

[66]

Schneider, M., & Reinartz, P. (2009). Matching of high resolution optical data to a shaded DEM. In 2009 IEEE international geoscience and remote sensing symposium.

[67]

Sdraka, M., Papoutsis, I., Psomas, B., Vlachos, K., Ioannidis, K., Karantzalos, K., Gialampoukidis, I., & Vrochidis, S. (2022). Deep learning for downscaling remote sensing images: Fusion and super-resolution. IEEE Geoscience and Remote Sensing Magazine, 10(3), 202–255.

[68]

Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., & Zhang, L. (2015). Missing information reconstruction of remote sensing data: A technical review. IEEE Geoscience and Remote Sensing Magazine, 3(3), 61–85.

[69]

Shen, M., Piao, S., Jeong, S. J., Zhou, L., Zeng, Z., Ciais, P., Chen, D., Huang, M., Jin, C. S., Li, L. Z., Li, Y., Myneni, R. B., Yang, K., Zhang, G., Zhang, Y., & Yao, T. (2015). Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9299–9304.

[70]

Somers, B., Asner, G. P., Tits, L., & Coppin, P. (2011). Endmember variability in spectral mixture analysis: A review. Remote Sensing of Environment, 115(7), 1603–1616.

[71]

Sun, L., Li, H., Wang, J., Chen, Y., Xiong, N., Wang, Z., Wang, J., & Xu, J. (2023). Impacts of climate change and human activities on NDVI in the Qinghai–Tibet plateau. Remote Sensing, 15(3), 587.

[72]

Sun, M., Gong, A., Zhao, X., Liu, N., Si, L., & Zhao, S. (2023). Reconstruction of a monthly 1 km NDVI time series product in China using random forest methodology. Remote Sensing, 15(13), 3353.

[73]

Sun, Z., Ouyang, X., Li, H., & Wang, J. (2024). A deep learning-based spatio-temporal NDVI data fusion model. Journal of Resources and Ecology, 15(1), 214–226.

[74]

Sun, Z., & Wang, J. (2022). The 30 m-NDVI-based alpine grassland changes and climate impacts in the Three-River Headwaters Region on the Qinghai–Tibet Plateau from 1990 to 2018. Journal of Resources and Ecology, 13(2), 186–195.

[75]

Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., & Wang, Y. (2015). Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment, 163, 326–340.

[76]

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

[77]

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498.

[78]

Ulloa, J., Ballari, D., Campozano, L., & Samaniego, E. (2017). Two-step downscaling of TRMM 3B43 V7 precipitation in contrasting climatic regions with sparse monitoring: The case of Ecuador in Tropical South America. Remote Sensing, 9(7), 758.

[79]

Wang, T., Yang, M., Yan, S., Geng, G., Li, Q., & Wang, F. (2020). Temporal and spatial vegetation index variability and response to temperature and precipitation in the Qinghai–Tibet plateau using GIMMS NDVI. Photogrammetric Engineering and Remote Sensing, 29(6), 4385–4395.

[80]

Wang, Y., Lv, W., Xue, K., Wang, S., Zhang, L., Hu, R., Zeng, H., Xu, X., Li, Y., Jiang, L., Hao, Y., Du, J., Sun, J., Dorji, T., Piao, S., Wang, C., Luo, C., Zhang, Z., Chang, X., … Niu, H. (2022). Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment, 3(10), 668–683.

[81]

Warren, R., Price, J., Fischlin, A., de la Nava Santos, S., & Midgley, G. (2011). Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Climatic Change, 106(2), 141–177.

[82]

Wu, S., Liu, L., Gao, J., & Wang, W. (2019). Integrate risk from climate change in China under global warming of 1.5 and 2.0°C. Earth’s Future, 7(12), 1307–1322.

[83]

Wu, S., Yin, Y., Zheng, D., & Yang, Q. (2007). Climatic trends over the Tibetan Plateau during 1971–2000. Journal of Applied Remote Sensing, 17(2), 141–151.

[84]

Wunderle, S., Oesch, D., Hauser, A., & Foppa, N. (2004). Operational estimation of vegetation index (NDVI), vegetation cover and leaf area index using NOAA-AVHRR data in an alpine environment. In M. Owe, G. D’Urso, J. Moreno, & A. Calera (Eds.), Proceedings of SPIE (Vol. 5232, pp. 20–29). Remote Sensing for Agriculture, Ecosystems and Hydrology V.

[85]

Xu, J., Zhang, F., Jiang, H., Hu, H., Zhong, K., Jing, W., Yang, J., & Jia, B. (2020). Downscaling Aster land surface temperature over urban areas with machine learning-based area-to-point regression Kriging. Remote Sensing, 12, 1082.

[86]

Xu, S., Wu, C., Wang, L., Gonsamo, A., Shen, Y., & Niu, Z. (2015). A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sensing of Environment, 162, 119–140.

[87]

Yan, X., Chen, H., Tian, B., Sheng, S., Wang, J., & Kim, J. S. (2021). A Downscaling-merging scheme for improving daily spatial precipitation estimates based on Random Forest and Cokriging. Remote Sensing, 13(11), 2040.

[88]

Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., & Fayziev, R. (2012). Third Pole Environment (TPE). Environmental Development, 3, 52–64.

[89]

You, Q., Min, J., & Kang, S. (2016). Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. International Journal of Climatology, 36(6), 2660–2670.

[90]

Yu, H., Guo, J., Cheng, Y., & Lou, Q. (2013). Techniques and methods of spatial data fusion. In J. Zhang, Z. Wang, S. Zhu, & X. Meng (Eds.), Applied mechanics and materials (Vol. 263–266, pp. 3274–3278). Information Technology Applications in Industry, PTS 1-4.

[91]

Yuan, H., Matthew, C., He, X. Z., Sun, Y., Liu, Y., Zhang, T., Gao, X., Yan, C., Chang, S., & Hou, F. (2022). Seasonal variation in soil and herbage CO2 efflux for a sheep-grazed alpine meadow on the north-east Qinghai–Tibetan plateau and estimated net annual CO2 exchange. Frontiers in Plant Science, 13, 860739.

[92]

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T., … Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), 1396.

[93]

Zeng, L., Wardlow, B. D., Wang, R., Shan, J., Tadesse, T., Hayes, M. J., & Li, D. (2016). A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 181, 237–250.

[94]

Zhang, G., Zhang, Y., Dong, J., & Xiao, X. (2013). Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4309–4314.

[95]

Zhang, Q., Cheng, J., & Wang, N. (2022). Fusion of all-weather land surface temperature from AMSR-E and MODIS data using Random Forest regression. IEEE Geoscience and Remote Sensing Letters, 19, 2502705.

[96]

Zhang, Y., He, Y., Li, Y., & Jia, L. (2022). Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environmental Science and Pollution Research, 29(34), 52277–52288.

[97]

Zhong, L., Ma, Y., Xue, Y., & Piao, S. (2019). Climate change trends and impacts on vegetation greening over the Tibetan Plateau. Journal of Applied Remote Sensing, 124(14), 7540–7552.

[98]

Zhou, D., Fan, G., Huang, R., Fang, Z., Liu, Y., & Li, H. (2007). Interannual variability of the normalized difference vegetation index on the Tibetan plateau and its relationship with climate change. Applied Mechanics and Materials, 24(3), 474–484.

[99]

Zhou, J., Jia, L., & Menenti, M. (2015). Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS. Remote Sensing of Environment, 163, 217–228.

[100]

Zhu, H., Liu, H., Zhou, Q., & Cui, A. (2023). Towards an accurate and reliable downscaling scheme for high-spatial-resolution precipitation data. Remote Sensing, 15(10), 2640.

[101]

Zurita-Milla, R., Kaiser, G., Clevers, J. G. P. W., Schneider, W., & Schaepman, M. E. (2009). Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics. Remote Sensing of Environment, 113(9), 1874–1885.

RIGHTS & PERMISSIONS

2024 The Authors. Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/