Fecal microbiota reveal adaptation of herbivores to the extreme environment of the Qinghai–Tibet Plateau

Hao Zou , Qi Li , Jie Liu , Xiangtao Wang , Qun Gao , Yunfeng Yang , Xinquan Zhao

Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 155 -170.

PDF
Grassland Research ›› 2024, Vol. 3 ›› Issue (2) : 155 -170. DOI: 10.1002/glr2.12075
RESEARCH ARTICLE

Fecal microbiota reveal adaptation of herbivores to the extreme environment of the Qinghai–Tibet Plateau

Author information +
History +
PDF

Abstract

Background: Gut microbiota is pivotal in regulating hosts’ biological processes and maintaining homeostasis, but knowledge about its role in wild herbivores in extreme environments remains limited.

Methods: Gut bacteria and fungi were sequenced in ruminant (Chiru and Yak) and nonruminant (Kiang) herbivores on the Qinghai–Tibet Plateau, and their community structure, co-occurrence networks, functions, and assembly mechanisms were investigated using multivariate ecological and statistical methods.

Results: Kiang had lower gut microbial diversity than Chiru and Yak. Bacterial host-specific exclusivity was greater than that of fungi. In addition to the evidence of glycan biosynthesis and carbohydrate metabolism, Chiru had a high Firmicutes/Bacteroidetes ratio and low animal pathogen abundance, suggesting better adaptation to the plateau’s harsh environment. Additionally, members of gut microbiota tended to co-occur rather than co-exclude in all herbivores. Different network complexity and stability patterns were observed between bacterial and fungal communities. Furthermore, gut bacterial assembly was primarily controlled by stochastic dispersal limitation and drift, whereas fungal assembly was primarily controlled by deterministic homogeneous selection except in Chiru.

Conclusions: On the Qinghai–Tibet Plateau, Chiru and Yak exhibit more diverse gut microbiota and more diverse metabolic functions than Kiang, and gut bacteria are more divergent than gut fungi in these herbivores.

Keywords

community assembly / composition and diversity / gut microbiota / Qinghai–Tibet Plateau / ruminant and nonruminant herbivores

Cite this article

Download citation ▾
Hao Zou, Qi Li, Jie Liu, Xiangtao Wang, Qun Gao, Yunfeng Yang, Xinquan Zhao. Fecal microbiota reveal adaptation of herbivores to the extreme environment of the Qinghai–Tibet Plateau. Grassland Research, 2024, 3(2): 155-170 DOI:10.1002/glr2.12075

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76, 473–493.

[2]

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180.

[3]

Bai, X., Lu, S., Yang, J., Jin, D., Pu, J., Díaz Moyá S., Xiong, Y., Rossello-Mora, R., & Xu, J. (2018). Precise fecal microbiome of the herbivorous Tibetan antelope inhabiting high-altitude alpine plateau. Frontiers in Microbiology, 9, 02321.

[4]

Belzer, C., & de Vos, W. M. (2012). Microbes inside—From diversity to function: The case of Akkermansia. The ISME Journal, 6, 1449–1458.

[5]

Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecology Letters, 16, 128–139.

[6]

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857.

[7]

Boots, B., Lillis, L., Clipson, N., Petrie, K., Kenny, D. A., Boland, T. M., & Doyle, E. (2013). Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. Journal of Applied Microbiology, 114, 626–635.

[8]

Burns, A. R., Stephens, W. Z., Stagaman, K., Wong, S., Rawls, J. F., Guillemin, K., & Bohannan, B. J. M. (2016). Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME Journal, 10, 655–664.

[9]

Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 11, 577–591.

[10]

Cao, R., Shen, M., & Fu, B. (2022). An overview of ecosystem changes in Tibetan and other alpine regions from earth observation. Remote Sensing, 14, 4839.

[11]

El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 11, 497–504.

[12]

Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066–9071.

[13]

Fan, P., Nelson, C. D., Driver, J. D., Elzo, M. A., Peñagaricano, F., & Jeong, K. C. (2021). Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. The ISME Journal, 15, 2306–2321.

[14]

Faust, K., & Raes, J. (2012). Microbial interactions: From networks to models. Nature Reviews Microbiology, 10, 538–550.

[15]

Flandroy, L., Poutahidis, T., Berg, G., Clarke, G., Dao, M.-C., Decaestecker, E., Furman, E., Haahtela, T., Massart, S., Plovier, H., Sanz, Y., & Rook, G. (2018). The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 627, 1018–1038.

[16]

Fu, H., Zhang, L., Fan, C., Liu, C., Li, W., Li, J., Zhao, X., Jia, S., & Zhang, Y. (2021). Domestication shapes the community structure and functional metagenomic content of the Yak fecal microbiota. Frontiers in Microbiology, 12, 59407.

[17]

Gao, H., Chi, X., Li, G., Qin, W., Song, P., Jiang, F., Liu, D., Zhang, J., Zhou, X., Li, S., & Zhang, T. (2020). Gut microbial diversity and stabilizing functions enhance the plateau adaptability of Tibetan wild ass (Equus kiang). Microbiology Open, 9, 1150–1161.

[18]

Gao, Q., Gao, S., Bates, C., Zeng, Y., Lei, J., Su, H., Dong, Q., Qin, Z., Zhao, J., Zhang, Q., Ning, D., Huang, Y., Zhou, J., & Yang, Y. (2021). The microbial network property as a bio-indicator of antibiotic transmission in the environment. Science of the Total Environment, 758, 143712.

[19]

Ge, R. L., Cai, Q., Shen, Y. Y., San, A., Ma, L., Zhang, Y., Yi, X., Chen, Y., Yang, L., Huang, Y., He, R., Hui, Y., Hao, M., Li, Y., Wang, B., Ou, X., Xu, J., Zhang, Y., Wu, K., … Wang, J. (2013). Draft genome sequence of the Tibetan antelope. Nature Communications, 4, 1858.

[20]

Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., Jimenez-Gasco, M. M., Nakagawa-Izumi, A., Sleighter, R. L., & Tien, M. (2008). Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America, 105, 12932–12937.

[21]

Gopal, P. K. (2011). Lactic acid bacteria|Lactobacillus spp.: Lactobacillus acidophilus. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 91–95). Academic Press.

[22]

Gruninger, R. J., Puniya, A. K., Callaghan, T. M., Edwards, J. E., Youssef, N., Dagar, S. S., Fliegerova, K., Griffith, G. W., Forster, R., Tsang, A., McAllister, T., & Elshahed, M. S. (2014). Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90, 1–17.

[23]

Hagey, J. V., Laabs, M., Maga, E. A., & DePeters, E. J. (2022). Rumen sampling methods bias bacterial communities observed. PLoS One, 17, e0258176.

[24]

Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Abecia, L., Angarita, E., Aravena, P., Nora Arenas, G., Ariza, C., Attwood, G. T., Mauricio Avila, J., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., Carvajal, A. M., … Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5, 14567.

[25]

Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, S. H., Seimon, A., Seimon, T. A., Ondzie, A. U., Karesh, W. B., Reed, P., Cameron, K. N., Lipkin, W. I., & Williams, B. L. (2018). Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nature Communications, 9, 1786.

[26]

Hu, X., Xu, Y., Liu, G., Hu, D., Wang, Y., Zhang, W., & Zheng, Y. (2020). The impact of anthelmintic treatment on gut bacterial and fungal communities in diagnosed parasite-free sika deer Cervus nippon. Applied Microbiology and Biotechnology, 104, 9239–9250.

[27]

Johnson, E. L., Heaver, S. L., Walters, W. A., & Ley, R. E. (2017). Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 95, 1–8.

[28]

Knowles, S. C. L., Eccles, R. M., & Baltrūnaitė L. (2019). Species identity dominates over environment in shaping the microbiota of small mammals. Ecology Letters, 22, 826–837.

[29]

Kohl, K. D. (2020). Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 375, 20190251.

[30]

Lee, J.-Y., Tsolis, R. M., & Bäumler, A. J. (2022). The microbiome and gut homeostasis. Science, 377, eabp9960.

[31]

Li, H., Li, T., Li, X., Wang, G., Lin, Q., & Qu, J. (2018). Gut microbiota in Tibetan herdsmen reflects the degree of urbanization. Frontiers in Microbiology, 9, 01745.

[32]

Li, H., Zhou, R., Zhu, J., Huang, X., & Qu, J. (2019). Environmental filtering increases with elevation for the assembly of gut microbiota in wild pikas. Microbial Biotechnology, 12, 976–992.

[33]

Liu, H., Han, X., Zhao, N., Hu, L., Wang, X., Luo, C., Chen, Y., Zhao, X., & Xu, S. (2022). The gut microbiota determines the high-altitude adaptability of Tibetan wild asses (Equus kiang) in Qinghai–Tibet Plateau. Frontiers in Microbiology, 13, 949002.

[34]

Liu, H., Zhao, X., Han, X., Xu, S., Zhao, L., Hu, L., Xu, T., Zhao, N., Zhang, X., Chen, D., He, F., & Chen, X. (2020). Comparative study of gut microbiota in Tibetan wild asses (Equus kiang) and domestic donkeys (Equus asinus) on the Qinghai–Tibet Plateau. PeerJ, 8, e9032.

[35]

Ma, Y., Ma, S., Chang, L., Wang, H., Ga, Q., Ma, L., Bai, Z., Shen, Y., & Ge, R. L. (2019). Gut microbiota adaptation to high altitude in indigenous animals. Biochemical and Biophysical Research Communications, 516, 120–126.

[36]

Macke, E., Callens, M., De Meester, L., & Decaestecker, E. (2017). Host–genotype dependent gut microbiota drives zooplankton tolerance to toxic Cyanobacteria. Nature Communications, 8, 1608.

[37]

Mahtab, N., Zhou, L., Zhang, F., & Wang, W. (2021). Seasonal variations in the gut fungal communities of hooded crane (Grus monacha) at wintering and stopover sites in China. Animals, 11, 941.

[38]

Martínez, I., Stegen, J. C., Maldonado-Gómez, M. X., Eren, A. M., Siba, P. M., Greenhill, A. R., & Walter, J. (2015). The gut microbiota of rural Papua New Guineans: Composition, diversity patterns, and ecological processes. Cell Reports, 11, 527–538.

[39]

Mo, Y., Peng, F., Gao, X., Xiao, P., Logares, R., Jeppesen, E., Ren, K., Xue, Y., & Yang, J. (2021). Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 9, 128.

[40]

Newsome, S. D., Feeser, K. L., Bradley, C. J., Wolf, C., Takacs-Vesbach, C., & Fogel, M. L. (2020). Isotopic and genetic methods reveal the role of the gut microbiome in mammalian host essential amino acid metabolism. Proceedings of the Royal Society Series B: Biological Sciences, 287, 20192995.

[41]

Ning, D., Deng, Y., Tiedje, J. M., & Zhou, J. (2019). A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 116, 16892–16898.

[42]

Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X., Yang, Y., Arkin, A. P., Firestone, M. K., & Zhou, J. (2020). A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11, 4717.

[43]

Pei, J., Wang, L., Xu, W., Kurz, D. J., Geng, J., Fang, H., Guo, X., & Niu, Z. (2019). Recovered Tibetan antelope at risk again. Science, 366, 194.

[44]

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S. T., Baldrian, P., Frøslev, T. G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H. O., Järv, H., Madrid, H., Nordén, J., … Tedersoo, L. (2020). FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105, 1–16.

[45]

Purushe, J., Fouts, D. E., Morrison, M., White, B. A., Mackie, R. I., Coutinho, P. M., Henrissat, B., & Nelson, K. E. (2010). Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microbial Ecology, 60, 721–729.

[46]

Qin, W., Li, S., Wu, N., Wen, Z., Xie, J., Ma, H., & Zhang, S. (2022). Main factors influencing the gut microbiota of datong Yaks in mixed group. Animals, 12, 1777.

[47]

Qin, W., Song, P., & Zhang, S. (2022). Seasonal and soil microbiota effects on the adaptive strategies of wild goitered Gazelles based on the gut microbiota. Frontiers in Microbiology, 13, 918090.

[48]

Qiu, J. (2008). China: The third pole. Nature, 454, 393–396.

[49]

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., … Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555, 210–215.

[50]

Russell, J. B., & Rychlik, J. L. (2001). Factors that alter rumen microbial ecology. Science, 292, 1119–1122.

[51]

Shi, J., Lu, F., Li, X., Zhang, Z., Su, X., Dong, S., Xu, H., & Zhang, X. (2016). Dietary overlap and co-existence of sympatric wild yak, Tibetan wild ass and Tibetan antelope in Arjin Shan National Nature Reserve, Xinjiang Province, China. Wildlife Research, 43, 323–331.

[52]

Shi, Z., Ma, L., Wang, Y., & Liu, J. (2023). Abundant and rare bacteria in anthropogenic estuary: Community co-occurrence and assembly patterns. Ecological Indicators, 146, 109820.

[53]

Signore, A. V., & Storz, J. F. (2020). Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope. Science Advances, 6, eabb5447.

[54]

Siriyappagouder, P., Kiron, V., Lokesh, J., Rajeish, M., Kopp, M., & Fernandes, J. (2018). The intestinal mycobiota in wild zebrafish comprises mainly Dothideomycetes while Saccharomycetes predominate in their laboratory-reared counterparts. Frontiers in Microbiology, 9, 387.

[55]

Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R., & Bolnick, D. I. (2015). Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. The ISME Journal, 9, 2515–2526.

[56]

St-Louis, A., & Côté S. D. (2009). Equus kiang (Perissodactyla: Equidae). Mammalian Species, 835, 1–11.

[57]

Sun, M. Y., Dafforn, K. A., Johnston, E. L., & Brown, M. V. (2013). Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environmental Microbiology, 15, 2517–2531.

[58]

Tang, X., Zhang, L., Fan, C., Wang, L., Fu, H., Ren, S., Shen, W., Jia, S., Wu, G., & Zhang, Y. (2021). Dietary fiber influences bacterial community assembly processes in the gut microbiota of Durco × Bamei crossbred pig. Frontiers in Microbiology, 12, 688554.

[59]

The Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.

[60]

Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 3, 213–223.

[61]

de Vos, W. M., Tilg, H., Van Hul, M., & Cani, P. D. (2022). Gut microbiome and health: Mechanistic insights. Gut, 71, 1020–1032.

[62]

Wang, Y., Fu, Y., He, Y., Kulyar, M. F. A., Iqbal, M., Li, K., & Liu, J. (2021). Longitudinal characterization of the gut bacterial and fungal communities in yaks. Journal of Fungi, 7, 559.

[63]

Welch, C. B., Ryman, V. E., Pringle, T. D., & Lourenco, J. M. (2022). Utilizing the gastrointestinal microbiota to modulate cattle health through the microbiome–gut–organ axes. Microorganisms, 10, 1391.

[64]

Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., & Wemheuer, B. (2020). Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome, 15, 11.

[65]

Wu, L., Yang, Y., Chen, S., Zhao, M., Zhu, Z., Yang, S., Qu, Y., Ma, Q., He, Z., Zhou, J., & He, Q. (2016). Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 104, 1–10.

[66]

Xue, D., Chen, H., Zhao, X., Xu, S., Hu, L., Xu, T., Jiang, L., & Zhan, W. (2017). Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai–Tibetan Plateau. Systematic and Applied Microbiology, 40, 227–236.

[67]

Yan, Q., Li, J., Yu, Y., Wang, J., He, Z., Van Nostrand, J. D., Kempher, M. L., Wu, L., Wang, Y., Liao, L., Li, X., Wu, S., Ni, J., Wang, C., & Zhou, J. (2016). Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 18, 4739–4754.

[68]

Yang, J., Yu, Z., Wang, B., & Ndayisenga, F. (2021). Gut region induces gastrointestinal microbiota community shift in Ujimqin sheep (Ovis aries): From a multi-domain perspective. Environmental Microbiology, 23, 7603–7616.

[69]

Yang, X., Jiang, G., Zhang, Y., Wang, N., Zhang, Y., Wang, X., Zhao, F. J., Xu, Y., Shen, Q., & Wei, Z. (2023). MBPD: A multiple bacterial pathogen detection pipeline for one health practices. iMeta, 2, e82.

[70]

Yu, Q., Li, G., & Li, H. (2022). Two community types occur in gut microbiota of large-sample wild plateau pikas (Ochotona curzoniae). Integrative Zoology, 17, 366–378.

[71]

Yuan, M. M., Guo, X., Wu, L., Zhang, Y., Xiao, N., Ning, D., Shi, Z., Zhou, X., Wu, L., Yang, Y., Tiedje, J. M., & Zhou, J. (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343–348.

[72]

Zhang, H., Sparks, J. B., Karyala, S. V., Settlage, R., & Luo, X. M. (2015). Host adaptive immunity alters gut microbiota. The ISME Journal, 9, 770–781.

[73]

Zhang, J., Wang, P., Dingkao, R., Du, M., Ahmad, A. A., Liang, Z., Zheng, J., Shen, J., Yan, P., & Ding, X. (2022). Fecal microbiota dynamics reveal the feasibility of early weaning of yak calves under conventional grazing system. Biology, 11, 31.

[74]

Zhao, X., Xu, T., Ellis, J., He, F., Hu, L., & Li, Q. (2020). Rewilding the wildlife in Sangjiangyuan National Park, Qinghai–Tibetan Plateau. Ecosystem Health and Sustainability, 6, 1776643.

[75]

Zhou, J., & Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81, e00002-17.

RIGHTS & PERMISSIONS

2024 The Authors. Grassland Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Grassland Society and Lanzhou University.

AI Summary AI Mindmap
PDF

295

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/