Comparing Genomic Profiles of ALK Fusion-Positive and ALK Fusion-Negative Nonsmall Cell Lung Cancer Patients
Wenchao Xia , Jing Yang , Hongbin Li , Ling Li , Jinfeng Liu
Global Medical Genetics ›› 2024, Vol. 11 ›› Issue (02) : 175 -186.
Comparing Genomic Profiles of ALK Fusion-Positive and ALK Fusion-Negative Nonsmall Cell Lung Cancer Patients
Background Anaplastic lymphoma kinase (ALK) fusion events account for 3 to 7% of genetic alterations in patients with nonsmall cell lung cancer (NSCLC). This study aimed to explore the landscape of ALK fusion-positive and ALK fusion-negative in a large cohort of NSCLC patients.
Methods The formalin-fixed paraffin-embedded specimens of NSCLC patients who underwent next-generation sequencing from 2020 to 2023 in Yinfeng Gene Technology Co., Ltd. Clinical laboratory were included in this study.
Results In the current study, a total of 180 (3.20%) patients tested positive for ALK fusions in 5,622 NSCLC samples. Within the ALK-positive cohort, a total of 228 ALK fusions were identified. Furthermore, five novel ALK fusion partners, including DAB1-ALK, KCMF1-ALK, KIF13A-ALK, LOC643770-ALK, and XDH-ALK were identified. In cases with ALK fusion-positive, TP53 alterations were the most prevalent (26.3%), followed by CDKN2A (8.4%), epidermal growth factor receptor (EGFR, 5.6%), and ALK (5.6%). By contrast, EGFR alterations were most prevalent (51%) in patients with ALK fusion-negative NSCLC, followed by TP53 (42.7%), KRAS (11.6%), and CDKN2A (11.3%). A total of 10 cases where ALK fusion co-occurred with EGFR mutations were also identified. Notably, the ALK fusion positivity rate was higher in younger patients (p < 0.0001) and in female patients (p = 0.0429). Additionally, positive ALK test results were more prevalent in patients with high programmed death-ligand 1 expression, especially when applying a 50% cutoff.
Conclusions Collectively, these findings offer valuable genomic insights that could inform the personalized clinical care of patients with NSCLC harboring ALK fusions within the context of precision medicine.
NSCLC / ALK fusion / next-generation sequencing / genomic landscape
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
Global Medical Genetics
/
| 〈 |
|
〉 |