Reclassification of Whole Exome Sequencing-derived Genetic Variants in Pendred Syndrome with ACMG/AMP Standards

Poon Kok-Siong, Mei-Ling Tan Karen

PDF(159 KB)
PDF(159 KB)
Global Medical Genetics ›› 2021, Vol. 8 ›› Issue (03) : 129-131. DOI: 10.1055/s-0041-1725072
Orginal Article
Orginal Article

Reclassification of Whole Exome Sequencing-derived Genetic Variants in Pendred Syndrome with ACMG/AMP Standards

Author information +
History +

Cite this article

Download citation ▾
Poon Kok-Siong, Mei-Ling Tan Karen. Reclassification of Whole Exome Sequencing-derived Genetic Variants in Pendred Syndrome with ACMG/AMP Standards. Global Medical Genetics, 2021, 8(03): 129‒131 https://doi.org/10.1055/s-0041-1725072

References

[1]
Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, et al.Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet 2017;25(02):176-182
[2]
den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 2016;37(06):564-569
[3]
Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17(05):405-424
[4]
Salfati EL, Spencer EG, Topol SE, et al.Re-analysis of whole-exome sequencing data uncovers novel diagnostic variants and improves molecular diagnostic yields for sudden death and idiopathic diseases. Genome Med 2019;11(01):83
[5]
Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, et al.Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine 2020; 54:102732
[6]
Bizhanova A, Kopp P.Genetics and phenomics of Pendred syndrome. Mol Cell Endocrinol 2010;322(1-2):83-90
[7]
Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ.Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet 2007;80(06): 1055-1063
[8]
Yang T, Gurrola JG II, Wu H, et al.Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome.AmJ Hum Genet 2009;84(05):651-657
[9]
Ben Said M, Dhouib H, BenZina Z, et al. Segregation of a new mutation in SLC26A4 and p.E47X mutation in GJB2 within a consanguineous Tunisian family affected with Pendred syndrome. Int J Pediatr Otorhinolaryngol 2012;76(06):832-836
[10]
Landa P, Differ AM, Rajput K, Jenkins L, Bitner-Glindzicz M.Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet 2013;14:85
[11]
Zhao J, Yuan Y, Huang S, et al.KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS One 2014;9(11):e108134
[12]
Chow YP, Abdul Murad NA, Mohd Rani Z, et al.Exome sequencing identifies SLC26A4, GJB2, SCARB2 and DUOX2 mutations in 2 siblings with Pendred syndrome in a Malaysian family. Orphanet J Rare Dis 2017;12(01):40
[13]
Schäffer AA.Digenic inheritance in medical genetics. J Med Genet 2013;50(10):641-652
[14]
Kopanos C, Tsiolkas V, Kouris A, et al.VarSome: the human genomic variant search engine. Bioinformatics 2019;35(11): 1978-1980
[15]
Landrum MJ, Lee JM, Benson M, et al.ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46(D1):D1062-D1067
[16]
Dai P, Yu F, Han B, et al.GJB2 mutation spectrum in 2,063 Chinese patients with nonsyndromic hearing impairment. J Transl Med 2009;7:26
[17]
He L, Pang X, Chen P,Wang X, Yang T,Wu H.Carrier re-sequencing reveals rare but benign variants in recessive deafness genes. Sci Rep 2017;7(01):11355
[18]
Fu C, Zhang S, Su J, et al.Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. J Endocrinol Invest 2015;38(11):1219-1224
[19]
Maruo Y, Takahashi H, Soeda I, et al.Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metab 2008;93(11): 4261-4267
[20]
Fu C, Luo S, Zhang S, et al.Next-generation sequencing analysis of DUOX2 in 192 Chinese subclinical congenital hypothyroidism (SCH) and CH patients. Clin Chim Acta 2016;458:30-34
[21]
Deignan JL, Chung WK, Kearney HM, Monaghan KG, Rehder CW, Chao ECACMG Laboratory Quality Assurance Committee. Points to consider in the reevaluation and reanalysis of genomic test results: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2019;21(06):1267-1270

RIGHTS & PERMISSIONS

2021 Global Medical Genetics
PDF(159 KB)

Accesses

Citations

Detail

Sections
Recommended

/