From Anti-EBV Immune Responses to the EBV Diseasome via Cross-reactivity

Darja Kanduc, Yehuda Shoenfeld

PDF(290 KB)
PDF(290 KB)
Global Medical Genetics ›› 2020, Vol. 7 ›› Issue (02) : 51-63. DOI: 10.1055/s-0040-1715641
Original Article
Original Article

From Anti-EBV Immune Responses to the EBV Diseasome via Cross-reactivity

Author information +
History +

Abstract

Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.

Keywords

EBV epitopes / systemic lupus erythematosus / cross-reactivity / autoimmunity / negative selection / self-reactive lymphocytes / pathogenic autoantibodies

Cite this article

Download citation ▾
Darja Kanduc, Yehuda Shoenfeld. From Anti-EBV Immune Responses to the EBV Diseasome via Cross-reactivity. Global Medical Genetics, 2020, 7(02): 51‒63 https://doi.org/10.1055/s-0040-1715641

References

[1]
Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964; 1(7335): 702-703
[2]
Old LJ, Boyse EA, Oettgen HF, et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt's lymphoma cells. Proc Natl Acad Sci U S A 1966; 56(06): 1699-1704
[3]
Henle G, Henle W, Clifford P, et al. Antibodies to Epstein-Barr virus in Burkitt's lymphoma and control groups. J Natl Cancer Inst 1969; 43(05): 1147-1157
[4]
Gunvén P, Klein G, Henle G, Henle W, Clifford P. Epstein-Barr virus in Burkitt's lymphoma and nasopharyngeal carcinoma. Antibodies to EBV associated membrane and viral capsid antigens in Burkitt lymphoma patients. Nature 1970; 228(5276): 1053-1056
[5]
Harley B, Shivapathasundram G, Astradsson A, Muthurajah V, Wickremesekera A. An unusual presentation of cerebellar lymphoma. J Clin Neurosci 2018; 57: 177-180
[6]
Yahia ZA, Adam AA, Elgizouli M, et al. Epstein Barr virus: a prime candidate of breast cancer aetiology in Sudanese patients. Infect Agent Cancer 2014; 9(01): 9
[7]
Fołtyn S, Strycharz-Dudziak M, Drop B, Boguszewska A, Polz-Dacewicz M. Serum EBV antibodies and LMP-1 in Polish patients with oropharyngeal and laryngeal cancer. Infect Agent Cancer 2017; 12: 31
[8]
Khammissa RA, Fourie J, Chandran R, Lemmer J, Feller L. Epstein-Barr virus and its association with Oral Hairy Leukoplakia: a short review. Int J Dent 2016; 2016: 4941783
[9]
Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y. Infections and autoimmunity—friends or foes?. Trends Immunol 2009; 30(08): 409-414
[10]
Maślińska M. The role of Epstein-Barr virus infection in primary Sjögren's syndrome. Curr Opin Rheumatol 2019; 31(05): 475-483
[11]
Dittfeld A, Gwizdek K, Michalski M, Wojnicz R. A possible link between the Epstein-Barr virus infection and autoimmune thyroid disorders. Cent Eur J Immunol 2016; 41(03): 297-301
[12]
Woulfe JM, Gray MT, Gray DA, Munoz DG, Middeldorp JM. Hypothesis: a role for EBV-induced molecular mimicry in Parkinson's disease. Parkinsonism Relat Disord 2014; 20(07): 685-694
[13]
Di Loreto S, Fabiano C, Nigro G. High prevalence of streptococcal or Epstein-Barr virus infections in children with acute non-septic monoarthritis. New Microbiol 2014; 37(01): 81-86
[14]
Hasegawa D, Kaji M, Takeda H, et al. Fatal degeneration of specialized cardiac muscle associated with chronic active Epstein-Barr virus infection. Pediatr Int 2009; 51(06): 846-848
[15]
Henle W, Hummeler K, Henle G. Antibody coating and agglutination of virus particles separated from the EB3 line of Burkitt lymphoma cells. J Bacteriol 1966; 92(01): 269-271
[16]
Henle W, Henle G, Gunvén P, Klein G, Clifford P, Singh S. Patterns of antibodies to Epstein-Barr virus-induced early antigens in Burkitt's lymphoma. Comparison of dying patients with long-term survivors. J Natl Cancer Inst 1973; 50(05): 1163-1173
[17]
Asito AS, Piriou E, Odada PS, et al. Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt's lymphoma patients: a case control study. Infect Agent Cancer 2010; 5: 13
[18]
Liu MY, Shih YY, Chou SP, et al. Antibody against the Epstein-Barr virus BHRF1 protein, a homologue of Bcl-2, in patients with nasopharyngeal carcinoma. J Med Virol 1998; 56(03): 179-185
[19]
Cheng WM, Chan KH, Chen HL, et al. Assessing the risk of nasopharyngeal carcinoma on the basis of EBV antibody spectrum. Int J Cancer 2002; 97(04): 489-492
[20]
Fachiroh J, Schouten T, Hariwiyanto B, et al. Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: a comparison of Indonesian, Chinese, and European subjects. J Infect Dis 2004; 190(01): 53-62
[21]
Guo X, Li T, Li F, et al. Intermittent abortive reactivation of Epstein-Barr virus during the progression of nasopharyngeal cancer as indicated by elevated antibody levels. Oral Oncol 2019; 93: 85-90
[22]
Johansson B, Klein G, Henle W, Henle G. Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin's disease. Int J Cancer 1970; 6(03): 450-462
[23]
Mueller N, Evans A, Harris NL, et al. Hodgkin's disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 1989; 320(11): 689-695
[24]
Mueller NE, Lennette ET, Dupnik K, Birmann BM. Antibody titers against EBNA1 and EBNA2 in relation to Hodgkin lymphoma and history of infectious mononucleosis. Int J Cancer 2012; 130(12): 2886-2891
[25]
Schetter AJ, You WC, Lennette ET, Gail MT, Rabkin CS. Association of Epstein-Barr virus antibody levels with precancerous gastric lesions in a high-risk cohort. Cancer Sci 2008; 99(02): 350-354
[26]
Sumaya CV, Myers LW, Ellison GW, Ench Y. Increased prevalence and titer of Epstein-Barr virus antibodies in patients with multiple sclerosis. Ann Neurol 1985; 17(04): 371-377
[27]
Farrell RA, Antony D, Wall GR, et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 2009; 73(01): 32-38
[28]
Jakimovski D, Ramanathan M, Weinstock-Guttman B, et al. Higher EBV response is associated with more severe gray matter and lesion pathology in relapsing multiple sclerosis patients: a case-controlled magnetization transfer ratio study. Mult Scler 2020; 26(03): 322-332
[29]
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2012; 4(12): 3701-3730
[30]
Alspaugh MA, Henle G, Lennette ET, Henle W. Elevated levels of antibodies to Epstein-Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis. J Clin Invest 1981; 67(04): 1134-1140
[31]
Toussirot E, Roudier J. Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol 2008; 22(05): 883-896
[32]
Cavalcante P, Serafini B, Rosicarelli B, et al. Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 2010; 67(06): 726-738
[33]
Csuka D, Banati M, Rozsa C, Füst G, Illes Z. High anti-EBNA-1 IgG levels are associated with early-onset myasthenia gravis. Eur J Neurol 2012; 19(06): 842-846
[34]
Draborg AH, Lydolph MC, Westergaard M, et al. Elevated concentrations of serum immunoglobulin free light chains in systemic lupus erythematosus patients in relation to disease activity, inflammatory status, B cell activity and Epstein-Barr virus antibodies. PLoS One 2015; 10(09): e0138753
[35]
Martínez-A C, Marcos MA, de la Hera A, et al. Immunological consequences of HIV infection: advantage of being low responder casts doubts on vaccine development. Lancet 1988; 1(8583): 454-457
[36]
Fachiroh J, Paramita DK, Hariwiyanto B, et al. Single-assay combination of Epstein-Barr Virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening. J Clin Microbiol 2006; 44(04): 1459-1467
[37]
Paramita DK, Fachiroh J, Haryana SM, Middeldorp JM. Evaluation of commercial EBV RecombLine assay for diagnosis of nasopharyngeal carcinoma. J Clin Virol 2008; 42(04): 343-352
[38]
Levin LI, Chang ET, Ambinder RF, et al. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 2012; 120(18): 3750-3755
[39]
Capone G, Calabrò M, Lucchese G, et al. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis 2013; 69(03): 205-212
[40]
Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-associated cancer and autoimmunity: searching for therapies. Vaccines (Basel) 2015; 3(01): 74-89
[41]
41 Calabrò M. Epstein Barr Virus Immunoevasion. Sequence Similarity between Human Proteins and Epstein Barr Virus [PhD thesis]. Bari: University of Bari; 2015
[42]
Kanduc D. Proteome-wide Epstein-Barr virus analysis of peptide sharing with human systemic lupus erythematosus autoantigens. Isr Med Assoc J 2019; 21(07): 444-448
[43]
Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989; 337(6208): 651-653
[44]
Zeng W, Pagnon J, Jackson DC. The C-terminal pentapeptide of LHRH is a dominant B cell epitope with antigenic and biological function. Mol Immunol 2007; 44(15): 3724-3731
[45]
Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18(08): 487-494
[46]
Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012; 44(03): 291-296
[47]
Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci 2013; 14(02): 111-120
[48]
Hao SS, Zong MM, Zhang Z, et al. The inducing roles of the new isolated bursal hexapeptide and pentapeptide on the immune response of AIV vaccine in mice. Protein Pept Lett 2019; 26(07): 542-549
[49]
Vita R, Mahajan S, Overton JA, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 2019; 47(D1): D339-D343
[50]
Chen C, Li Z, Huang H, Suzek BE, Wu CH.; UniProt Consortium. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics 2013; 29(21): 2808-2809
[51]
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-D515
[52]
Grønbaek K, Worm J, Ralfkiaer E, Ahrenkiel V, Hokland P, Guldberg P. ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood 2002; 100(04): 1430-1437
[53]
Yan J, Nie K, Mathew S, et al. Inactivation of BANK1 in a novel IGH-associated translocation t(4;14)(q24;q32) suggests a tumor suppressor role in B-cell lymphoma. Blood Cancer J 2014; 4: e215
[54]
Dam EM, Habib T, Chen J, et al. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin Immunol 2016; 173: 171-180
[55]
Kurosawa N, Fujimoto R, Ozawa T, Itoyama T, Sadamori N, Isobe M. Reduced level of the BCL11B protein is associated with adult T-cell leukemia/lymphoma. PLoS One 2013; 8(01): e55147
[56]
Punwani D, Zhang Y, Yu J, et al. Multisystem anomalies in severe combined immunodeficiency with mutant BCL11B. N Engl J Med 2016; 375(22): 2165-2176
[57]
Gutierrez A, Kentsis A, Sanda T, et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 2011; 118(15): 4169-4173
[58]
Greipp PT, Smoley SA, Viswanatha DS, et al. Patients with chronic lymphocytic leukaemia and clonal deletion of both 17p13.1 and 11q22.3 have a very poor prognosis. Br J Haematol 2013; 163(03): 326-333
[59]
Xu L, Li X, Chu ES, et al. Epigenetic inactivation of BCL6B, a novel functional tumour suppressor for gastric cancer, is associated with poor survival. Gut 2012; 61(07): 977-985
[60]
Yang Q, Gao J, Xu L, Zeng Z, Sung JJ, Yu J. Promoter hypermethylation of BCL6B gene is a potential plasma DNA biomarker for gastric cancer. Biomarkers 2013; 18(08): 721-725
[61]
Deng J, Liang H, Dong Q, et al. The survival decrease in gastric cancer is associated with the methylation of B-cell CLL/lymphoma 6 member B promoter. Open Biol 2014; 4(07): 140067
[62]
Wang J, Dong L, Xu L, et al. B cell CLL/lymphoma 6 member B inhibits hepatocellular carcinoma metastases in vitro and in mice. Cancer Lett 2014; 355(02): 192-200
[63]
Esmailzadeh S, Huang Y, Su MW, Zhou Y, Jiang X. BIN1 tumor suppressor regulates Fas/Fas ligand-mediated apoptosis through c-FLIP in cutaneous T-cell lymphoma. Leukemia 2015; 29(06): 1402-1413
[64]
Fu L, Gao Z, Zhang X, et al. Frequent concomitant epigenetic silencing of the stress-responsive tumor suppressor gene CADM1, and its interacting partner DAL-1 in nasal NK/T-cell lymphoma. Int J Cancer 2009; 124(07): 1572-1578
[65]
Martinelli S, Checquolo S, Consoli F, et al. Loss of CBL E3-ligase activity in B-lineage childhood acute lymphoblastic leukaemia. Br J Haematol 2012; 159(01): 115-119
[66]
Fang M, Pak ML, Chamberlain L, Xing W, Yu H, Green MR. The CREB coactivator CRTC2 is a lymphoma tumor suppressor that preserves genome integrity through transcription of DNA mismatch repair genes. Cell Reports 2015; 11(09): 1350-1357
[67]
Shawky SA, El-Borai MH, Khaled HM, et al. The prognostic impact of hypermethylation for a panel of tumor suppressor genes and cell of origin subtype on diffuse large B-cell lymphoma. Mol Biol Rep 2019; 46(04): 4063-4076
[68]
Küçük C, Hu X, Jiang B, et al. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res 2015; 21(07): 1699-1711
[69]
Oricchio E, Nanjangud G, Wolfe AL, et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 2011; 147(03): 554-564
[70]
Laginestra MA, Cascione L, Motta G, et al. Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol 2020; 33(02): 179-187
[71]
Hu X, Zhai Y, Kong P, et al. FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett 2017; 397: 83-93
[72]
Stöcklein H, Smardova J, Macak J, et al. Detailed mapping of chromosome 17p deletions reveals HIC1 as a novel tumor suppressor gene candidate telomeric to TP53 in diffuse large B-cell lymphoma. Oncogene 2008; 27(18): 2613-2625
[73]
Chang S, Yim S, Park H. The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Exp Mol Med 2019; 51(06): 1-17
[74]
Schulz WA, Lang A, Koch J, Greife A. The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int J Cancer 2019; 145(03): 614-620
[75]
Yang W, Ernst P. Distinct functions of histone H3, lysine 4 methyltransferases in normal and malignant hematopoiesis. Curr Opin Hematol 2017; 24(04): 322-328
[76]
Fernandez-Pol S, Ma L, Joshi RP, Arber DA. A survey of somatic mutations in 41 genes in a cohort of T-cell lymphomas identifies frequent mutations in genes involved in epigenetic modification. Appl Immunohistochem Mol Morphol 2019; 27(06): 416-422
[77]
Froimchuk E, Jang Y, Ge K. Histone H3 lysine 4 methyltransferase KMT2D. Gene 2017; 627: 337-342
[78]
Zhang J, Dominguez-Sola D, Hussein S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med 2015; 21(10): 1190-1198
[79]
Johansson P, Klein-Hitpass L, Grabellus F, et al. Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 2016; 7(38): 62627-62639
[80]
Wang Y, Cui H, Schroering A, et al. NF-kappa B2 p100 is a pro-apoptotic protein with anti-oncogenic function. Nat Cell Biol 2002; 4(11): 888-893
[81]
Keller U, Huber J, Nilsson JA, et al. Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer 2010; 10: 348
[82]
Thakur S, Lin HC, Tseng WT, et al. Rearrangement and altered expression of the NFKB-2 gene in human cutaneous T-lymphoma cells. Oncogene 1994; 9(08): 2335-2344
[83]
Klemann C, Camacho-Ordonez N, Yang L, et al. Clinical and immunological phenotype of patients with primary immunodeficiency due to damaging mutations in NFKB2. Front Immunol 2019; 10: 297
[84]
Zhang T, Ma J, Nie K, et al. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma. Blood Cancer J 2014; 4: e261
[85]
Johansson P, Klein-Hitpass L, Choidas A, et al. SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia. Blood Cancer J 2018; 8(01): 11
[86]
Geli J, Kiss N, Kogner P, Larsson C. Suppression of RIZ in biologically unfavourable neuroblastomas. Int J Oncol 2010; 37(05): 1323-1330
[87]
Xie W, Li X, Chen X, Huang S, Huang S. Decreased expression of PRDM2 (RIZ1) and its correlation with risk stratification in patients with myelodysplastic syndrome. Br J Haematol 2010; 150(02): 242-244
[88]
Sasaki O, Meguro K, Tohmiya Y, Funato T, Shibahara S, Sasaki T. Altered expression of retinoblastoma protein-interacting zinc finger gene, RIZ, in human leukaemia. Br J Haematol 2002; 119(04): 940-948
[89]
Cimmino L, Dawlaty MM, Ndiaye-Lobry D, et al. TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol 2015; 16(06): 653-662
[90]
Kosmider O, Gelsi-Boyer V, Ciudad M, et al; Groupe Francophone des Myélodysplasies. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 2009; 94(12): 1676-1681
[91]
Menotti M, Ambrogio C, Cheong TC, et al. Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med 2019; 25(01): 130-140
[92]
Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476(7360): 298-303
[93]
da Silva Almeida AC, Abate F, Khiabanian H, et al. The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome. Nat Genet 2015; 47(12): 1465-1470
[94]
Rabello DDA, Ferreira VDDS, Berzoti-Coelho MG, et al. MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia. Cancer Cell Int 2018; 18: 26
[95]
Sahm F, Jakobiec FA, Meyer J, et al. Somatic mutations of DICER1 and KMT2D are frequent in intraocular medulloepitheliomas. Genes Chromosomes Cancer 2016; 55(05): 418-427
[96]
Augert A, Zhang Q, Bates B, et al. Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance). J Thorac Oncol 2017; 12(04): 704-713
[97]
Sun P, Wu T, Sun X, et al. KMT2D inhibits the growth and metastasis of bladder cancer cells by maintaining the tumor suppressor genes. Biomed Pharmacother 2019; 115: 108924
[98]
Ding B, Yan L, Zhang Y, et al. Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer. FEBS Open Bio 2019; 9(04): 693-706
[99]
Ardeshir-Larijani F, Bhateja P, Lipka MB, Sharma N, Fu P, Dowlati A. KMT2D mutation is associated with poor prognosis in non-small-cell lung cancer. Clin Lung Cancer 2018; 19(04): e489-e501
[100]
Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 42(09): 790-793
[101]
Cheon CK, Ko JM. Kabuki syndrome: clinical and molecular characteristics. Korean J Pediatr 2015; 58(09): 317-324
[102]
Yap KL, Johnson AEK, Fischer D, et al. Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 9 affected individuals. Genet Med 2019; 21(01): 233-242
[103]
Kurahashi N, Miyake N, Mizuno S, et al. Characteristics of epilepsy in patients with Kabuki syndrome with KMT2D mutations. Brain Dev 2017; 39(08): 672-677
[104]
Scala M, Morana G, Sementa AR, et al. Aggressive desmoid fibromatosis in Kabuki syndrome: expanding the tumor spectrum. Pediatr Blood Cancer 2019; 66(09): e27831
[105]
Margot H, Boursier G, Duflos C, et al. Immunopathological manifestations in Kabuki syndrome: a registry study of 177 individuals. Genet Med 2020; 22(01): 181-188
[106]
Arsov T, Sestan M, Cekada N, et al. Systemic lupus erythematosus: a new autoimmune disorder in Kabuki syndrome. Eur J Med Genet 2019; 62(06): 103538
[107]
Porntaveetus T, Abid MF, Theerapanon T, et al. Expanding the oro-dental and mutational spectra of Kabuki Syndrome and expression of KMT2D and KDM6A in human tooth germs. Int J Biol Sci 2018; 14(04): 381-389
[108]
Herz HM. Enhancer deregulation in cancer and other diseases. BioEssays 2016; 38(10): 1003-1015
[109]
Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 1994; 125(6 Pt 1): 876-885
[110]
Thrasher AJ, Burns SO. WASP: a key immunological multitasker. Nat Rev Immunol 2010; 10(03): 182-192
[111]
Rivers E, Thrasher AJ. Wiskott-Aldrich syndrome protein: emerging mechanisms in immunity. Eur J Immunol 2017; 47(11): 1857-1866
[112]
MacCarthy-Morrogh L, Gaspar HB, Wang YC, et al. Absence of expression of the Wiskott-Aldrich syndrome protein in peripheral blood cells of Wiskott-Aldrich syndrome patients. Clin Immunol Immunopathol 1998; 88(01): 22-27
[113]
Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2018; 38(01): 13-27
[114]
Marangoni F, Trifari S, Scaramuzza S, et al. WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med 2007; 204(02): 369-380
[115]
Ohya T, Yanagimachi M, Iwasawa K, et al. Childhood-onset inflammatory bowel diseases associated with mutation of Wiskott-Aldrich syndrome protein gene. World J Gastroenterol 2017; 23(48): 8544-8552
[116]
Bouma G, Carter NA, Recher M, et al. Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells. Eur J Immunol 2014; 44(09): 2692-2702
[117]
Huang GZ, Lo YL. Correlation between acetylcholine receptor antibody levels and thymic pathology in myasthenia gravis: a review. J Clin Neuromuscul Dis 2013; 14(04): 209-217
[118]
Cork SM, Kaur B, Devi NS, et al. A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 2012; 31(50): 5144-5152
[119]
Kaur B, Cork SM, Sandberg EM, et al. Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 2009; 69(03): 1212-1220
[120]
Soh RYZ, Lim JP, Samy RP, Chua PJ, Bay BH. A-kinase anchor protein 12 (AKAP12) inhibits cell migration in breast cancer. Exp Mol Pathol 2018; 105(03): 364-370
[121]
Bortlik M, Vitkova I, Papezova M, et al. Deficiency of adenomatous polyposis coli protein in sporadic colorectal adenomas and its associations with clinical phenotype and histology. World J Gastroenterol 2006; 12(24): 3901-3905
[122]
Carson DJ, Santoro IM, Groden J. Isoforms of the APC tumor suppressor and their ability to inhibit cell growth and tumorigenicity. Oncogene 2004; 23(42): 7144-7148
[123]
Daly CS, Shaw P, Ordonez LD, et al. Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium. Oncogene 2017; 36(13): 1793-1803
[124]
Ying X, Li-ya Q, Feng Z, Yin W, Ji-hong L. MiR-939 promotes the proliferation of human ovarian cancer cells by repressing APC2 expression. Biomed Pharmacother 2015; 71: 64-69
[125]
Tiberi L, Bonnefont J, van den Ameele J, et al. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell 2014; 26(06): 797-812
[126]
Dragon-Durey MA, Quartier P, Frémeaux-Bacchi V, et al. Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases. J Immunol 2001; 166(12): 7612-7616
[127]
Ohno K, Tsujino A, Brengman JM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A 2001; 98(04): 2017-2022
[128]
Lokki ML, Circolo A, Ahokas P, Rupert KL, Yu CY, Colten HR. Deficiency of human complement protein C4 due to identical frameshift mutations in the C4A and C4B genes. J Immunol 1999; 162(06): 3687-3693
[129]
Nyberg P, Xie L, Sugimoto H, et al. Characterization of the anti-angiogenic properties of arresten, an alpha1beta1 integrin-dependent collagen-derived tumor suppressor. Exp Cell Res 2008; 314(18): 3292-3305
[130]
Shaikh S, Shettigar SKG, Kumar S, Kantharia S, Kurva J, Cherian S. Novel mutation in Cul7 gene in a family diagnosed with 3M syndrome. J Genet 2019; 98: 21
[131]
Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW, Vogelstein B. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev 1994; 8(10): 1174-1183
[132]
Mollenhauer J, Wiemann S, Scheurlen W, et al. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours. Nat Genet 1997; 17(01): 32-39
[133]
Takeshita H, Sato M, Shiwaku HO, et al. Expression of the DMBT1 gene is frequently suppressed in human lung cancer. Jpn J Cancer Res 1999; 90(09): 903-908
[134]
Baldari U, Raccagni AA, Celli B, Righini MG. Chronic bullous disease of childhood following Epstein-Barr virus seroconversion: a case report. Clin Exp Dermatol 1996; 21(02): 123-126
[135]
Sugi T, Hashimoto T, Hibi T, Nishikawa T. Production of human monoclonal anti-basement membrane zone (BMZ) antibodies from a patient with bullous pemphigoid (BP) by Epstein-Barr virus transformation. Analyses of the heterogeneity of anti-BMZ antibodies in BP sera using them. J Clin Invest 1989; 84(04): 1050-1055
[136]
Huang FY, Wong DK, Tsui VW, et al. Targeted genomic profiling identifies frequent deleterious mutations in FAT4 and TP53 genes in HBV-associated hepatocellular carcinoma. BMC Cancer 2019; 19(01): 789
[137]
Sun H, Zhou H, Zhang Y, et al. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9(13): 2275-2283
[138]
Lu YJ, Wu CS, Li HP, et al. Aberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancer. Genes Chromosomes Cancer 2010; 49(05): 412-424
[139]
Abuzzahab MJ, Schneider A, Goddard A, et al; Intrauterine Growth Retardation (IUGR) Study Group. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 2003; 349(23): 2211-2222
[140]
Longo N, Wang Y, Pasquali M. Progressive decline in insulin levels in Rabson-Mendenhall syndrome. J Clin Endocrinol Metab 1999; 84(08): 2623-2629
[141]
Kanatsuna N, Delli A, Andersson C, et al. Doubly reactive INS-IGF2 autoantibodies in children with newly diagnosed autoimmune (type 1) diabetes. Scand J Immunol 2015; 82(04): 361-369
[142]
Tanokashira D, Fukuokaya W, Taguchi A. Involvement of insulin receptor substrates in cognitive impairment and Alzheimer's disease. Neural Regen Res 2019; 14(08): 1330-1334
[143]
Norquay LD, D'Aquino KE, Opare-Addo LM, et al. Insulin receptor substrate-2 in beta-cells decreases diabetes in nonobese diabetic mice. Endocrinology 2009; 150(10): 4531-4540
[144]
Arai T, Hashimoto H, Kawai K, et al. Fulminant type 1 diabetes mellitus observed in insulin receptor substrate 2 deficient mice. Clin Exp Med 2008; 8(02): 93-99
[145]
Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 2015; 7(03): 503-519
[146]
Dai B, Huang H, Guan F, et al. Histone demethylase KDM5A inhibits glioma cells migration and invasion by down regulating ZEB1. Biomed Pharmacother 2018; 99: 72-80
[147]
Gaidamakov S, Maximova OA, Chon H, et al. Targeted deletion of the gene encoding the La autoantigen (Sjögren's syndrome antigen B) in B cells or the frontal brain causes extensive tissue loss. Mol Cell Biol 2014; 34(01): 123-131
[148]
Cam JA, Zerbinatti CV, Knisely JM, Hecimovic S, Li Y, Bu G. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem 2004; 279(28): 29639-29646
[149]
Herrendorff R, Hänggi P, Pfister H, et al. Selective in vivo removal of pathogenic anti-MAG autoantibodies, an antigen-specific treatment option for anti-MAG neuropathy. Proc Natl Acad Sci U S A 2017; 114(18): E3689-E3698
[150]
Ramanathan S, Dale RC, Brilot F. Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev 2016; 15(04): 307-324
[151]
Duncan GJ, Plemel JR, Assinck P, et al. Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathol 2017; 134(03): 403-422
[152]
Shi Y, Shao Q, Li Z, et al. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination. Neurosci Bull 2018; 34(02): 247-260
[153]
Sowerby JM, Thomas DC, Clare S, et al. NBEAL2 is required for neutrophil and NK cell function and pathogen defense. J Clin Invest 2017; 127(09): 3521-3526
[154]
Abramowicz A, Gos M. Neurofibromin in neurofibromatosis type 1—mutations in NF1gene as a cause of disease. Dev Period Med 2014; 18(03): 297-306
[155]
Li D, Yuan H, Ortiz-Gonzalez XR, et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am J Hum Genet 2016; 99(04): 802-816
[156]
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2019; 471(05): 735-743
[157]
Schneppenheim R, Frühwald MC, Gesk S, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 2010; 86(02): 279-284
[158]
Tomsic J, He H, Akagi K, et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep 2015; 5: 10566
[159]
Shehadeh LA, Yu K, Wang L, et al. SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson's disease. PLoS One 2010; 5(02): e9104
[160]
Ching YP, Wong CM, Chan SF, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem 2003; 278(12): 10824-10830
[161]
Rashad NM, El-Shabrawy RM, Said D, El-Shabrawy SM, Emad G. Serum levels of transforming growth factor beta -1 (TGF-β1) as an early no invasive marker for diagnosis of lupus nephritis in systemic lupus erythematosus patients. Egypt J Immunol 2019; 26(01): 31-42
[162]
Pérez-Serra A, Toro R, Sarquella-Brugada G, et al. Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224: 461-472
[163]
Jiang X, Detera-Wadleigh SD, Akula N, et al. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry 2019; 24(04): 613-624
[164]
Miyanaga K, Kato Y, Nakamura T, et al. Expression and role of thrombospondin-1 in colorectal cancer. Anticancer Res 2002; 22(6C): 3941-3948
[165]
Tardif S, Cormier N. Role of zonadhesin during sperm-egg interaction: a species-specific acrosomal molecule with multiple functions. Mol Hum Reprod 2011; 17(11): 661-668
[166]
Ghosh AK, Steele R, Ray RB. Carboxyl-terminal repressor domain of MBP-1 is sufficient for regression of prostate tumor growth in nude mice. Cancer Res 2005; 65(03): 718-721
[167]
Ghosh AK, Steele R, Ryerse J, Ray RB. Tumor-suppressive effects of MBP-1 in non-small cell lung cancer cells. Cancer Res 2006; 66(24): 11907-11912
[168]
Kanduc D, Shoenfeld Y. Inter-pathogen peptide sharing and the original antigenic sin: solving a paradox. Open Immunol J 2018; 8: 16-27
[169]
Cohn M. Two unresolved problems facing models of the self-nonself discrimination. J Theor Biol 2015; 387: 31-38
[170]
Rose NR. Negative selection, epitope mimicry and autoimmunity. Curr Opin Immunol 2017; 49: 51-55
[171]
Rose NR. Learning from myocarditis: mimicry, chaos and black holes. F1000Prime Rep 2014; 6: 25
[172]
Kanduc D. From hepatitis C virus immunoproteomics to rheumatology via cross-reactivity in one table. Curr Opin Rheumatol 2019; 31(05): 488-492
[173]
Kanduc D, Shoenfeld Y. Human papillomavirus epitope mimicry and autoimmunity: the molecular truth of peptide sharing. Pathobiology 2019; 86(5-6): 285-295
[174]
Kanduc D. HCV: written in our DNA. Self Nonself 2011; 2(02): 108-113
[175]
Kanduc D. The self/nonself issue: a confrontation between proteomes. Self Nonself 2010; 1(03): 255-258
[176]
Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anticancer Agents Med Chem 2015; 15(10): 1264-1268
[177]
Ray SK, Putterman C, Diamond B. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci U S A 1996; 93(05): 2019-2024
[178]
Ruiz JT, Luján L, Blank M, Shoenfeld Y. Adjuvants- and vaccines-induced autoimmunity: animal models. Immunol Res 2017; 65(01): 55-65
[179]
Whitton JL, Fujinami RS. Viruses as triggers of autoimmunity: facts and fantasies. Curr Opin Microbiol 1999; 2(04): 392-397
[180]
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400(05): 629-638
[181]
Kanduc D, Lucchese A, Mittelman A. Non-redundant peptidomes from DAPs: towards “the vaccine”?. Autoimmun Rev 2007; 6(05): 290-294
[182]
Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front Biosci (Schol Ed) 2012; 4: 1393-1401
[183]
Kanduc D, Shoenfeld Y. From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev 2016; 15(11): 1054-1061

RIGHTS & PERMISSIONS

2020 Global Medical Genetics
PDF(290 KB)

Accesses

Citations

Detail

Sections
Recommended

/