Toward disaster management in rock engineering: Automated machine learning paradigm for predicting the uniaxial compressive strength of rock materials

Xin Yin , Feng Gao , Daniel Chukwuemek , Honggan Yu , Leonardo Z. Wongbae , Peitao Li , Yucong Pane , He Liu , Quansheng Liu

Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (4) : 249 -260.

PDF (7618KB)
Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (4) :249 -260. DOI: 10.1016/j.ghm.2025.11.006
research-article

Toward disaster management in rock engineering: Automated machine learning paradigm for predicting the uniaxial compressive strength of rock materials

Author information +
History +
PDF (7618KB)

Abstract

The uniaxial compressive strength (UCS) of rocks is a crucial indicator for evaluating the bearing capacity of geological structures in rock engineering, and it holds significant implications for disaster management. How- ever, direct measurement poses a significant challenge. Therefore, simpler alternatives such as Schmidt hammer rebound number (SRn), P-wave velocity (Vp), and point load index (Is) are frequently used to estimate UCS indirectly. In this study, we compiled a comprehensive dataset of 1168 samples that included SRn, Vp, Is, and UCS values. The dataset was refined using an isolation forest algorithm, which identified and removed 280 outliers, leaving a dataset of 888 samples for analysis. We developed and assessed an automated machine learning (AutoML) model for predicting UCS, introducing a novel approach to tackle this prediction challenge. Additionally, we compared models enhanced by Bayesian optimization, including multi-layer perceptron (MLP), support vector machine (SVM), Gaussian process regression (GPR), and K-nearest neighbor (KNN). Among these, the AutoML model demonstrated superior performance in UCS prediction, offering a rapid and efficient method for estimating UCS in engineering applications and enabling intelligent classification of rock masses. The study also evaluated the sensitivity and contribution of SRn, Vp, and Is in UCS estimation by various techniques, including permutation feature importance (PFI), SHapley Additive exPlanations (SHAP), and local interpretable model-agnostic explanations (LIME). The results underscore that the AutoML approach not only streamlines UCS modeling but also provides a robust and comprehensive solution, significantly enhancing the accuracy and ef- ficiency of the prediction process.

Keywords

Rocks / Uniaxial compressive strength / Non-destructive measurement / Automated machine learning

Cite this article

Download citation ▾
Xin Yin, Feng Gao, Daniel Chukwuemek, Honggan Yu, Leonardo Z. Wongbae, Peitao Li, Yucong Pane, He Liu, Quansheng Liu. Toward disaster management in rock engineering: Automated machine learning paradigm for predicting the uniaxial compressive strength of rock materials. Geohazard Mechanics, 2025, 3(4): 249-260 DOI:10.1016/j.ghm.2025.11.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Daniel, S. Cheng, X. Yin, Z.M. Barrie, Y. Pan, Q. Liu, F. Gao, M. Li, X. Huang, AI- aided short-term decision making of rockburst damage scale in underground engineering, Undergr. Space 23 ( 2025) 362-378, https://doi.org/10.1016/j.undsp.2025.02.005.

[2]

Z. Liu, D. Li, Y. Liu, B. Yang, Z.X. Zhang, Prediction of uniaxial compressive strength of rock based on lithology using stacking models, Rock Mech. Bull. 2 (4) ( 2023) 100081, https://doi.org/10.1016/j.rockmb.2023.100081.

[3]

C. Daniel, X. Yin, X. Huang, J.A. Busari, A.I. Daniel, H. Yu, Y. Pan, Bayesian optimization-enhanced ensemble learning for the uniaxial compressive strength prediction of natural rock and its application, Geohazard Mech. 2 (3) ( 2024) 197-215, https://doi.org/10.1016/j.ghm.2024.05.002.

[4]

D. Zhang, Y. Shen, Z. Huang, X. Xie, Auto machine learning-based modelling and prediction of excavation-induced tunnel displacement, J. Rock Mech. Geotech.Eng. 14 (4) ( 2022) 1100-1114, https://doi.org/10.1016/j.jrmge.2022.03.005.

[5]

M.Y. Hassan, H. Arman, Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks, Sci. Rep. 12 (1) ( 2022) 1-17, https://doi.org/10.1038/s41598-022-25633-0.

[6]

M. Wang, W. Wan, Y. Zhao, Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model, C. R. Mec. 348 (1) ( 2020) 3-32, https://doi.org/10.5802/CRMECA.3.

[7]

A. Mahmoodzadeh, M. Mohammadi, H. Hashim Ibrahim, S. Nariman Abdulhamid, S. Ghafoor Salim, H. Farid Hama Ali, M. Kamal Majeed, Artificial intelligence forecasting models of uniaxial compressive strength, Transportat. Geotech. 27 (September 2020) ( 2021) 100499, https://doi.org/10.1016/j.trgeo.2020.100499.

[8]

N.M. Khan, K. Cao, Q. Yuan, M.H. Bin Mohd Hashim, H. Rehman, S. Hussain, M.Z. Emad, B. Ullah, K.S. Shah, S. Khan, Application of machine learning and multivariate statistics to predict uniaxial compressive strength and static young's modulus using physical properties under different thermal conditions, Sustainability (Switzerland) 14 (16) ( 2022), https://doi.org/10.3390/su14169901.

[9]

A. Teymen, E.C. Mengüç, Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks, Int. J. Min. Sci. Technol. 30 (6) ( 2020) 785-797, https://doi.org/10.1016/j.ijmst.2020.06.008.

[10]

H. Nasiri, A. Homafar, S.C. Chelgani, Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using an explainable artificial intelligence, Results Geophys. Sci. 8 (December) ( 2021) 100034, https://doi.org/10.1016/j.ringps.2021.100034.

[11]

E.N. Asare, M. Affam, Y.Y. Ziggah, A hybrid intelligent prediction model of autoencoder neural network and multivariate adaptive regression spline for uniaxial compressive strength of rocks, Model. Earth Sys. Environ. 9 (3) ( 2023) 3579-3595, https://doi.org/10.1007/s40808-023-01717-2.

[12]

X. Wei, N.M. Shahani, X. Zheng, Predictive modeling of the uniaxial compressive strength of rocks using an artificial neural network approach, Mathematics 11 (7) ( 2023) 1650, https://doi.org/10.3390/math11071650.

[13]

H. Wang, C. Zhang, B. Zhou, S. Xue, P. Jia, X. Zhu, Prediction of triaxial mechanical properties of rocks based on mesoscopic finite element numerical simulation and multi-objective machine learning, J. King Saud Univ. Sci. 35 (7) ( 2023) 102846, https://doi.org/10.1016/j.jksus.2023.102846.

[14]

S. Dadhich, J.K. Sharma, M. Madhira, Prediction of uniaxial compressive strength of rock using machine learning, J. Instit. Eng. (India): Series A 103 (4) ( 2022) 1209-1224, https://doi.org/10.1007/s40030-022-00688-4.

[15]

D. Jahed Armaghani, M.F. Mohd Amin, S. Yagiz, R.S. Faradonbeh, R.A. Abdullah, Prediction of the uniaxial compressive strength of sandstone using various modeling techniques, Int. J. Rock Mech. Min. Sci. 85 ( 2016) 174-186, https://doi.org/10.1016/j.ijrmms.2016.03.018.

[16]

S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock, Int. J. Rock Mech. Min. Sci. 38 (7) ( 2001) 981-994, https://doi.org/10.1016/S1365-1609(01)00039-9.

[17]

M. Wei, W. Meng, F. Dai, W. Wu, Application of machine learning in predicting the rate-dependent compressive strength of rocks, J. Rock Mech. Geotech. Eng. 14 (5) ( 2022) 1356-1365, https://doi.org/10.1016/j.jrmge.2022.01.008.

[18]

D.J. Armaghani, E. Tonnizam Mohamad, E. Momeni, M. Monjezi, M. Sundaram Narayanasamy, Prediction of the strength and elasticity modulus of granite through an expert artificial neural network, Arabian J. Geosci. 9 (1) ( 2016) 1-16, https://doi.org/10.1007/s12517-015-2057-3.

[19]

M. Hassanvand, S. Moradi, M. Fattahi, G. Zargar, M. Kamari, Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: modeling vs. artificial neural network application, Petrol. Res. 3 (4) ( 2018) 336-345, https://doi.org/10.1016/j.ptlrs.2018.08.004.

[20]

E. Momeni, D. Jahed Armaghani, M. Hajihassani, M.F. Mohd Amin, Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks, Measurement: J. Int. Measure.Confed. 60 ( 2015) 50-63, https://doi.org/10.1016/j.measurement.2014.09.075.

[21]

R. Asheghi, A.A. Shahri, M.K. Zak, Prediction of uniaxial compressive strength of different quarried rocks using metaheuristic algorithm, Arabian J. Sci. Eng. 44 (10) ( 2019) 8645-8659, https://doi.org/10.1007/s13369-019-04046-8.

[22]

H. Fattahi, A new method for forecasting uniaxial compressive strength of weak rocks, J. Mining Environ. 11 (2) ( 2020) 505-515, https://doi.org/10.22044/jme.2020.9328.1835.

[23]

J. Qiu, X. Yin, Y. Pan, X. Wang, M. Zhang, Prediction of uniaxial compressive strength in rocks based on extreme learning machine improved with metaheuristic algorithm, Mathematics 10 (19) ( 2022) 3490, https://doi.org/10.3390/math10193490.

[24]

A. Abbaszadeh Shahri, F. Maghsoudi Moud, S.P. Mirfallah Lialestani, A hybrid computing model to predict rock strength index properties using support vector regression, Eng. Comput. 38 (1) ( 2022) 579-594, https://doi.org/10.1007/s00366-020-01078-9.

[25]

T.F. Kurnaz, C. Erden, U. Dağdeviren, A.S. Demir, A.H. Ko€kçam, Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach, Nat. Hazards 120 (8) ( 2024) 6991-7014, https://doi. org/10.1007/s11069-024-06490-8.

[26]

J.A. Guzmán-Torres, F.J. Domínguez-Mota, E.M. Alonso-Guzmán, G. Tinoco-Guerrero, W. Martínez-Molina, ConcreteXAI: a multivariate dataset for concrete strength prediction via deep-learning-based methods, Data Brief 53 ( 2024) 110218, https://doi.org/10.1016/j.dib.2024.110218.

[27]

X. He, K. Zhao, X. Chu, AutoML: a survey of the state-of-the-art, Knowl. Base Syst. 212 ( 2021) 106622, https://doi.org/10.1016/j.knosys.2020.106622.

[28]

A. Liuliakov, L. Hermes, B. Hammer, AutoML technologies for the identification of sparse classification and outlier detection models, Appl. Soft Comput. 133 ( 2023) 109942, https://doi.org/10.1016/j.asoc.2022.109942.

[29]

A. Singh, S. Patel, V. Bhadani, V. Kumar, K. Gaurav, AutoML-GWL: automated machine learning model for the prediction of groundwater level, Eng. Appl. Artif. Intell. 127 ( 2024) 107405, https://doi.org/10.1016/j.engappai.2023.107405.

[30]

M. Abdelhedi, R. Jabbar, T. Mnif, C. Abbes, Prediction of uniaxial compressive strength of carbonate rocks and cement mortar using artificial neural network and multiple linear regressions, Acta Geodyn. Geomater. 17 (3) ( 2020) 367-377, https://doi.org/10.13168/AGG.2020.0027.

[31]

D. Basak, S. Pal, D.C. Patranabis, Support vector regression, Neural Inform. Process. Lett. Rev. 11 (10) ( 2007) 203-224, https://doi.org/10.1016/B978-0-12-815739-8.00007-9.

[32]

C. Daniel, J. Khatti, K.S. Grover, Assessment of compressive strength of high- performance concrete using soft computing approaches, Comput. Concr. 33 (1) ( 2024) 55-75, https://doi.org/10.12989/cac.2024.33.1.055.

[33]

J. Zhou, X. Li, X. Shi, Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines, Saf. Sci. 50 (4) ( 2012) 629-644, https://doi.org/10.1016/j.ssci.2011.08.065.

[34]

J.H. Metzen, Gaussian processess regression, in: https://github.com/scikit-learn/scikit-learn/blob/70fdc843a/sklearn/gaussian_process/_gpr. py#L26, 2007.

[35]

H. Sit, Quick start to gaussian process regression: a quick guide to understanding gaussian process regression (GPR) and using scikit-learn’s GPR package, Data Sci. ( 2019).

[36]

C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, Mass, 2006.

[37]

T.V. Nagaraju, S. Mantena, M. Azab, S.S. Alisha, C. El Hachem, M. Adamu, P.S. Rama Murthy, Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches, Results Eng. 17 (December 2022) ( 2023) 100973, https://doi.org/10.1016/j.rineng.2023.100973.

[38]

X. Yin, Q. Liu, Y. Pan, X. Huang, J. Wu, X. Wang, Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models, Nat. Resour. Res. 30 (2) ( 2021) 1795-1815, https://doi.org/10.1007/s11053-020-09787-0.

[39]

R.A. Joy, Fine tuning the prediction of the compressive strength of concrete : aa bayesian optimization based approach,in: 2021 International Conference on Innovations in Intelligent Systems and Applications, INISTA 2021 - Proceedings, August 2021, 2021, https://doi.org/10.1109/INISTA52262.2021.9548593.

[40]

T. Yang, T. Wen, X. Huang, B. Liu, H. Shi, S. Liu, X. Peng, G. Sheng, Predicting model of dual-mode shield tunneling parameters in complex ground using recurrent neural networks and multiple optimization algorithms, Appl. Sci. ( Switzerland) 14 (2) ( 2024), https://doi.org/10.3390/app14020581.

[41]

X. Yin, Q. Liu, X. Huang, Y. Pan, Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised- supervised learning, Tunn. Undergr. Space Technol. 120 ( 2022) 104285, https://doi.org/10.1016/j.tust.2021.104285.

[42]

T. Huijskens, Bayesian optimization with scikit-learn. https://thuijskens.github.io/2016/12/29/bayesian-optimisation, 2016.

[43]

X. Cheng, H. Tang, Z. Wu, D. Liang, Y. Xie, BILSTM-based deep neural network for rock-mass classification prediction using depth-sequence MWD data: a case study of a tunnel in Yunnan, China, Appl. Sci. ( Switzerland) 13 (10) ( 2023), https://doi.org/10.3390/app13106050.

[44]

D.C. Feng, Z.T. Liu, X.D. Wang, Y. Chen, J.Q. Chang, D.F. Wei, Z.M. Jiang, Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach, Constr. Build. Mater. 230 ( 2020) 117000, https://doi.org/10.1016/j.conbuildmat.2019.117000.

[45]

X. Xie, W. Jiang, J. Guo, Research on rockburst prediction classification based on GA-XGB model, IEEE Access 9 ( 2021) 83993-84020, https://doi.org/10.1109/ACCESS.2021.3085745.

[46]

Z. Liu, D.J. Armaghani, P. Fakharian, D. Li, D.V. Ulrikh, N.N. Orekhova, K.M. Khedher, Rock strength estimation using several tree-based ML techniques, CMES - Comput. Model. Eng. Sci. 133 (3) ( 2022) 799-824, https://doi.org/10.32604/cmes.2022.021165.

[47]

S. Li, Q. Zhang, S. Liu, M. Ma,Robust prediction of thrust for tunnel boring machines with adaptive heavy-tailed error distribution, Adv. Eng. Inform. 62 (PA) ( 2024) 102619, https://doi.org/10.1016/j.aei.2024.102619.

[48]

I. Çobanoǧlu, S.B. Çelik, Estimation of uniaxial compressive strength from point load strength, schmidt hardness and P-wave velocity, Bull. Eng. Geol. Environ. 67 (4) ( 2008) 491-498, https://doi.org/10.1007/s10064-008-0158-x.

[49]

S. Dehghan, G. Sattari, C.S. Chehreh, M.A. Aliabadi, Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks, Min. Sci. Technol. 20 (1) ( 2010) 41-46, https://doi.org/10.1016/S1674-5264(09)60158-7.

[50]

K. Diamantis, V.C. Moussas, Estimating uniaxial compressive strength of peridotites from simple tests using neural networks, Arabian J. Geosci. 14 (23) ( 2021) 1-13, https://doi.org/10.1007/s12517-021-09101-z.

[51]

I. Dinçer, A. Acar, S. Ural, Estimation of strength and deformation properties of Quaternary caliche deposits, Bull. Eng. Geol. Environ. 67 (3) ( 2008) 353-366, https://doi.org/10.1007/s10064-008-0146-1.

[52]

H. Güneyli, A. Güneyli, N. Yapıcı, S. Karahan, Prediction the micro-deval abrasion loss of rock aggregates from mainly the ultrasonic pulse velocity and some strength parameters, Arabian J. Geosci. 15 (6) ( 2022), https://doi.org/10.1007/s12517-022-09717-9.

[53]

M. Heidari, H. Mohseni, S.H. Jalali, Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models, Geotech. Geol. Eng. 36 (1) ( 2017) 401-412, https://doi.org/10.1007/s10706-017-0334-5.

[54]

R. Kallu, P. Roghanchi, Correlations between direct and indirect strength test methods, Int. J. Min. Sci. Technol. 25 (3) ( 2015) 355-360, https://doi.org/10.1016/j.ijmst.2015.03.005.

[55]

M. Karakus, B. Tutmez, Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, schmidt hammer and sonic velocity, Rock Mech. Rock Eng. 39 (1) ( 2006) 45-57, https://doi.org/10.1007/s00603-005-0050-y.

[56]

A. Kılıç, A. Teymen, Determination of mechanical properties of rocks using simple methods, Bull. Eng. Geol. Environ. 67 (2) ( 2008) 237-244, https://doi.org/10.1007/s10064-008-0128-3.

[57]

C. Kurtulus¸, F. Sertçelik, I. Sertçelik, Correlating physico-mechanical properties of intact rocks with P-wave velocity, Acta Geodaetica et Geophysica 51 (3) ( 2016) 571-582, https://doi.org/10.1007/s40328-015-0145-1.

[58]

D.A. Mishra, A. Basu, Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system, Eng. Geol. 160 ( 2013) 54-68, https://doi.org/10.1016/j.enggeo.2013.04.004.

[59]

I.T. Ng, K.V. Yuen, C.H. Lau, Predictive model for uniaxial compressive strength for grade III granitic rocks from Macao, Eng. Geol. 199 ( 2015) 28-37, https://doi.org/10.1016/j.enggeo.2015.10.008.

[60]

R.S. Tandon, V. Gupta, Estimation of strength characteristics of different Himalayan rocks from schmidt hammer rebound, point load index, and compressional wave velocity, Bull. Eng. Geol. Environ. 74 (2) ( 2015) 521-533, https://doi.org/10.1007/s10064-014-0629-1.

[61]

A. Tuǧrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey, Eng. Geol. 51 (4) ( 1999) 303-317, https://doi.org/10.1016/S0013-7952(98)00071-4.

[62]

S. Pandey, S. Paudel, K. Devkota, K. Kshetri, P.G. Asteris, Machine learning unveils the complex nonlinearity of concrete materials' uniaxial compressive strength, Int. J. Constr. Manag. 25 (6) ( 2024) 635-649, https://doi.org/10.1080/15623599.2024.2345008.

[63]

N. Huang, G. Lu, D. Xu, A permutation importance-based feature selection method for short-term electricity load forecasting using random forest, Energies 9 (10) ( 2016), https://doi.org/10.3390/en9100767.

[64]

C. Daniel, F. Gao, X. Yin, Z.M. Barrie, L.Z. Wongbae, P. Li, Y. Pan, Exploring the interpretability of machine learning approaches in modelling the uniaxial compressive strength of rocks, Mining Metall. Explor. 42 ( 2025) 2471-2497, https://doi.org/10.1007/s42461-025-01282-5,2025.

AI Summary AI Mindmap
PDF (7618KB)

297

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/