Micromechanics-based evaluation of strain rate effect on direct tensile failure in brittle rocks during dynamic geohazards

Xiaozhao Li , Huaiwei Yan , Qiulin Luo , Qi Chengzhi

Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (4) : 241 -248.

PDF (4431KB)
Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (4) :241 -248. DOI: 10.1016/j.ghm.2025.11.002
research-article

Micromechanics-based evaluation of strain rate effect on direct tensile failure in brittle rocks during dynamic geohazards

Author information +
History +
PDF (4431KB)

Abstract

Brittle rocks exhibit significantly lower dynamic direct tensile strength compared to their compressive strength, and the tensile strength is relatively difficult to be quantitatively measured through experiments. While extensive research has characterized dynamic tensile behavior through indirect testing methods, the direct tensile strength remains critical for evaluating rock fracture mechanisms and ensuring the safety of deep underground engineering systems. Notably, the microcrack propagation dynamics governing dynamic direct tensile fracture in brittle rocks remain understudied. To address this gap, we develop a micro-macro dynamic tensile fracture model that elucidates the stress-strain constitutive behavior of brittle rocks under dynamic loading. The model integrates four key components containing the quasi-static microcrack growth kinetics, the microcrack length-macroscopic strain relationships, the crack growth rate-strain rate coupling, and the transition from quasi-static to dynamic fracture toughness. A critical strain rate εʹ1c causing the crack initiation stress to be the peak strength is investigated. Parametric investigations quantify the influence of crack extension rate on stress-crack length relation, strain rate on stress-strain relation, and the governing parameters (initial damage D0, microcrack size a, inclination angle φ, and density Nv) on dynamic crack initiation thresholds, peak strength and critical strain rate. Its validity is rigorously verified through comparative analysis with experimental data. The results will have significance for disaster evaluation in rock engineering.

Keywords

Brittle rocks / Dynamic direct tensile fracture / Micro-macro fracture / Strain rate / Dynamic stress-strain curve

Cite this article

Download citation ▾
Xiaozhao Li, Huaiwei Yan, Qiulin Luo, Qi Chengzhi. Micromechanics-based evaluation of strain rate effect on direct tensile failure in brittle rocks during dynamic geohazards. Geohazard Mechanics, 2025, 3(4): 241-248 DOI:10.1016/j.ghm.2025.11.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhuang, Z. Mu, W. Cai, H. He, L.J. Hosking, G. Xi, B. Jiao, Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control: insights from numerical modelling to field application, Int. J. Min. Sci. Technol. 34 (8) ( 2024) 1095-1114.

[2]

Y. Xiong, D.Z. Kong, Z.B. Cheng, G. Wu, Q. Zhang, The comprehensive identification of roof risk in a fully mechanized working face using the cloud model, Mathematics 9 (17) ( 2021) 2072.

[3]

B. Ibrahim, I. Ahenkorah, Classifying rockburst with confidence: a novel conformal prediction approach, Int. J. Min. Sci. Technol. 34 (1) ( 2024) 51-64.

[4]

Y.Q. Shang, D.Z. Kong, S.J. Pu, Y. Xiong, Q. Li, Z. Cheng, Study on failure characteristics and control technology of roadway surrounding rock under repeated mining in close-distance coal seam, Mathematics 10 (13) ( 2022) 2166.

[5]

X. Liu, Y. Wang, B. Xu, X. Zhou, X. Guo, L. Miao, Dynamic damage evolution of bank slopes with serrated structural planes considering the deteriorated rock mass and frequent reservoir-induced earthquakes, Int. J. Min. Sci. Technol. 33 (9) ( 2023) 1131-1145.

[6]

L. Li, D. Kong, Q. Liu, Y. Xiong, F. Chen, H. Zhang, Y. Chu, Comprehensive identification of surface subsidence evaluation grades of mines in Southwest China, Mathematics 10 (15) ( 2022) 2664.

[7]

Y. Zhang, Q.Y. Zhang, X.Y. Zhou, W. Xiang, Direct tensile tests of red sandstone under different loading rates with the self-developed centering device, Geotech. Geol. Eng. 39 (2) ( 2021) 709-718.

[8]

R. Yuan, B. Shi, Acoustic emission activity in directly tensile test on marble specimens and its tensile damage constitutive model, Int. J. Coal. Sci. Techn. 5 (3) ( 2018) 295-304.

[9]

L.R. Li, J.H. Deng, L. Zheng, J.F. Liu, Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests, Rock Mech. Rock Eng. 50 (5) ( 2017) 1337-1346.

[10]

Q.H. Rao, Z.L. Liu, C.D. Ma, W. Yi, W.B. Xie, A new flattened cylinder specimen for direct tensile test of rock, Sensors 21 (12) ( 2021) 4157.

[11]

K. Du, X.F. Li, M. Tao, S.F. Wang, Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests, Int. J. Rock Mech. Min. Sci. 133 ( 2020) 104411.

[12]

R.C. Jiang, F. Dai, Y. Liu, A. Li, P. Feng, Frequency characteristics of acoustic emissions induced by crack propagation in rock tensile fracture, Rock Mech. Rock Eng. 54 (4) ( 2021) 2053-2065.

[13]

Z.H. Wang, S.L. Yang, Y.S. Tang, Mechanical behavior of different sedimentary rocks in the Brazilian test, Bull. Eng. Geol. Environ. 79 (10) ( 2020) 5415-5432.

[14]

D.Y. Li, B. Li, Z.Y. Han, Q.Q. Zhu, Evaluation on rock tensile failure of the Brazilian discs under different loading configurations by digital image correlation, Appl. Sci- Basel. 10 (16) ( 2020) 5513.

[15]

H.J. Su, H.W. Jing, M.R. Du, C. Wang, Experimental investigation on tensile strength and its loading rate effect of sandstone after high temperature treatment, Arabian J. Geosci. 9 (13) ( 2016) 1-11.

[16]

F.Q. Gong, L. Zhang, S.Y. Wang, Loading rate effect of rock material with the direct tensile and three Brazilian disc tests, Adv. Civ. Eng. 2019 ( 2019) 8.

[17]

G. Feng, Y. Kang, X.C. Wang, Y.Q. Hu, X.H. Li, Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions, Rock Mech. Rock Eng. 53 (7) ( 2020) 3325-3340.

[18]

B. Hou, Y.J. Zeng, M. Fan, D.D. Li, Brittleness evaluation of shale based on the Brazilian splitting test, Geofluids 2018 ( 2018) 11.

[19]

Y. Yu, Questioning the validity of the Brazilian test for determining tensile strength of rocks, Chin. J. Mech. Eng. 24 (7) ( 2005) 1150-1157.

[20]

T. Efe, S. Demirdag, K. Tufekci, N. Sengun, R. Altindag, Estimating the direct tensile strength of rocks from indirect tests, Arabian J. Geosci. 14 (14) ( 2021) 1-23.

[21]

Z.Y. Liao, J.B. Zhu, C.A. Tang, Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests, Int. J. Rock Mech. Min. Sci. 115 ( 2019) 21-32.

[22]

Z.J. Huang, Y. Zhang, Y. Li, D. Zhang, T. Yang, Z.L. Sui, Determining tensile strength of rock by the direct tensile, Brazilian splitting, and three-point bending methods: a comparative Study, Adv. Civ. Eng. 2021 ( 2021) 16.

[23]

M. Wang, F. Wang, Z.M. Zhu, Y.Q. Dong, M.M. Nezhad, L. Zhou, Modelling of crack propagation in rocks under SHPB impacts using a damage method. Fatigue, Fract. Eng. M. 42 (8) ( 2019) 1699-1710.

[24]

D.H. Ai, Y.C. Zhao, Q.F. Wang, C.W. Li, Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test, Int. J. Impact Eng. 126 ( 2019) 135-146.

[25]

X.Y. Liu, F. Dai, Y. Liu, P.D. Pei, Z.L. Yan, Experimental investigation of the dynamic tensile properties of naturally saturated rocks using the coupled static-dynamic flattened brazilian disc method, Energies 14 (16) ( 2021) 4784.

[26]

Y. Luo, G. Wang, X.P. Li, T.T. Liu, A.K. Mandal, M.N. Xu, K. Xu, Analysis of energy dissipation and crack evolution law of sandstone under impact load, Int. J. Rock Mech. Min. Sci. 132 ( 2020) 104359.

[27]

R. Li, J.B. Zhu, H.L. Qu, T. Zhou, C.T. Zhou, An experimental investigation on fatigue characteristics of granite under repeated dynamic tensions, Int. J. Rock Mech. Min. Sci. 158 ( 2022) 14.

[28]

D. Asprone, E. Cadoni, A. Prota, G. Manfredi, Dynamic behavior of a Mediterranean natural stone under tensile loading, Int. J. Rock Mech. Min. Sci. 46 (3) ( 2009) 514-520.

[29]

Z.Y. Liao, J.B. Zhu, K.W. Xia, C.A. Tang, Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars, Rock Mech. Rock Eng. 49 (10) ( 2016) 3917-3934.

[30]

K.W. Xia, W. Yao, B.B. Wu, Dynamic rock tensile strengths of Laurentian granite: experimental observation and micromechanical model, J. Rock. Mech. Geotech. 9 (1) ( 2017) 116-124.

[31]

X.Z. Li, H.W. Yan, Q.L. Luo, C.Z. Qi, Dynamic micro-macro fatigue fracture under cyclic direct tensile impacts in brittle rocks, J. Mt. Sci. 22 (5) ( 2025) 1848-1858.

[32]

X. Li, X. Che, H. Yan, C.Z. Qi, A micro-macro method for evaluating progressive and direct tensile fractures in brittle rocks, Geomech. Geophys. Geo. 8 (5) ( 2022) 1-17.

[33]

H.S. Bhat, A.J. Rosakis, C.G. Sammis, A micromechanics based constitutive model for brittle failure at high strain rates, J. Appl. Mech. 79 (3) ( 2012) 031016.

[34]

X.Z. Li, C.Z. Qi, Z.S. Shao, C. Ma, Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions, Acta Geophys. 66 (2) ( 2018) 141-152.

[35]

M.F. Ashby, C.G. Sammis, The damage mechanics of brittle solids in compression, Pure Appl. Geophys. 133 (3) ( 1990) 489-521.

[36]

Z.X. Zhang, An empirical relation between mode I fracture toughness and the tensile strength of rock, Int. J. Rock Mech. Min. Sci. 39 (3) ( 2002) 401-406.

[37]

E. Cadoni, Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension, Rock Mech. Rock Eng. 43 (6) ( 2010) 667-676.

[38]

Y.L. Chen, G. Lin, R.R. Mao, M. Li, X.B. Mao, K. Zhang, Strain rate effect on the mechanical properties and fracture surface roughness of sandstone subjected to dynamic direct tension, IEEE Access 8 ( 2020) 107977-107992.

[39]

E. Cadoni, S. Antonietti, M. Dotta, D. Forni, Strain rate behaviour of three rocks in tension, Eng. Trans. 59 (3) ( 2011) 197-210.

[40]

M. Cai, P. Kaiser, Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks, Int. J. Rock Mech. Min. Sci. 41 ( 2004) 478-483.

[41]

L. Wang, Effect of initial flaw on tensile properties of rock. Coal, Sci. Technol. 48 (S1) ( 2020) 66-70 (In Chinese).

[42]

Z.L. Liu, C.D. Ma, X.A. Wei, W.B. Xie, Experimental study on mechanical properties and failure modes of pre-existing cracks in sandstone during uniaxial tension/ compression testing, Eng. Fract. Mech. 255 ( 2021) 107966.

[43]

X.J. Hu, X.N. Gong, N. Xie, Q.Z. Zhu, P.P. Guo, H.B. Hu, J.J. Ma, Modeling crack propagation in heterogeneous granite using grain-based phase field method, Theor. Appl. Fract. Mech. 117 ( 2022) 103203.

[44]

M. Saadat, A. Taheri, Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach, Eng. Fract. Mech. 239 ( 2020) 107297.

[45]

S.Q. Yang, Y.H. Huang, Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass, Acta, Mech. Sinica. 30 (4) ( 2014) 547-558.

[46]

X.L. Xu, S.C. Wu, Y.T. Gao, M.F. Xu, Effects of micro-structure and micro- parameters on Brazilian tensile strength using flat-joint model, Rock Mech. Rock Eng. 49 (9) ( 2016) 3575-3595.

AI Summary AI Mindmap
PDF (4431KB)

287

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/