Rockburst failure time prediction based on a fuzzy comprehensive evaluation method using the acoustic emission

Wen Yuantao , Meng Fanzhen , Liu Pengyuan , Li Zhiyuan , Cai Qijin , Wang Feili , Liu Jie

Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (3) : 220 -230.

PDF (8352KB)
Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (3) : 220 -230. DOI: 10.1016/j.ghm.2025.08.003
Research article
research-article

Rockburst failure time prediction based on a fuzzy comprehensive evaluation method using the acoustic emission

Author information +
History +
PDF (8352KB)

Abstract

Rockbursts have become one of the most serious disasters in underground engineering around the world, which seriously threaten the construction safety of underground engineering. The effective prediction of rockbursts is of great significance for the safe production management of deep engineering. In this study, the uniaxial compression tests were carried out on sandstone and granite specimens with different shapes and sizes. A multi-index fuzzy comprehensive evaluation model was established based on the acoustic emission (AE) characteristic parameters to quantitatively evaluate the possibility of rock failure. In the fuzzy comprehensive evaluation model, the exponential distribution function in reliability theory was introduced, and the membership function was constructed by Gaussian distribution. The analytic hierarchy process (AHP) and entropy weight method (EWM) were utilized to determine the subjective and objective weights of each index respectively, and the distance function was employed to obtain the synthesized weight. Thereafter, the comprehensive prediction results were obtained by variable fuzzy pattern recognition (VFPR). The results show that for both sandstone and granite specimens with different shapes and sizes, the time advance (Δt) of rock failure forecasting is in the range of 145-491 ​s, and the forecasting point is 0.761-0.889 of the total loading time of rock failure. The prediction results are mainly affected by lithology, while the impact of rock shape and size is relatively insignificant. The sensitivity of fuzzy comprehensive evaluation index is: granite ​> ​sandstone. This research can provide a useful reference for the prediction of rockburst.

Keywords

Rockburst forecasting / Fuzzy comprehensive evaluation / Acoustic emission / Analytic hierarchy process / Entropy weight method

Cite this article

Download citation ▾
Wen Yuantao, Meng Fanzhen, Liu Pengyuan, Li Zhiyuan, Cai Qijin, Wang Feili, Liu Jie. Rockburst failure time prediction based on a fuzzy comprehensive evaluation method using the acoustic emission. Geohazard Mechanics, 2025, 3(3): 220-230 DOI:10.1016/j.ghm.2025.08.003

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yuantao Wen: Writing - original draft, Formal analysis. Fanzhen Meng: Conceptualization. Pengyuan Liu: Visualization. Zhiyuan Li: Visualization. Qijin Cai: Methodology. Feili Wang: Funding acquisition. Jie Liu: Writing - review & editing.

Declaration of competing interests

The author declares no conflicts of interest or competitive interests related to this study.

Acknowledgments

We gratefully acknowledge financial support from Taishan Scholars Program (Nos.2019KJG002 and 2019RKB01083) and the National Natural Science Foundation of China (Nos. 51879135 and 52309130). This work is also supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering Safety (No. SKLGME023003) and Natural Science Foundation of Shandong Province (No. ZR2022QD004).

References

[1]

M.C. He, H.P. Xie, S.P. Peng, Y.D. Jiang, Study on rock mechanics in deep mining engineering, Chin. J. Rock Mech. Eng. 24 (16) (2005) 2803-2813.

[2]

X.T. Feng, Y.X. Xiao, G.L. Feng, Z.B. Yao, B.R. Chen, C.X. Yang, G.S. Su, Study on the development process of rockbursts, Chin. J. Rock Mech. Eng. 38 (4) (2019) 649-673.

[3]

H.P. Xie, F. Gao, Y. Ju, Research and development of rock mechanics in deep ground engineering, Chin. J. Rock Mech. Eng. 34 (11) (2015) 2161-2178.

[4]

H. Zhou, F.Z. Meng, C.Q. Zhang, D.W. Hu, F.J. Yang, J.J. Lu, Analysis of rockburst mechanisms induced by structural planes in deep tunnels, Bull. Eng. Geol. Environ. 74 (4) (2015) 1435-1451.

[5]

M.C. He, J.L. Miao, J.L. Feng, Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions, Int. J. Rock Mech. Min. Sci. 47 (2) (2010) 286-298.

[6]

Y.S. Pan, Y.M. Song, J. Liu, Pattern, change and new situation of coal mine rockburst prevention and control in China, Chin. J. Rock Mech. Eng. 42 (9) (2023) 2081-2095.

[7]

Y.Z. Li, L. Yuan, Q.H. Zhang, S.T. Wang, C.M. Mu, X.S. Zhang, True-triaxial experimental study on the rockburst characteristics of rock mass with a structural plane, Chin. J. Rock Mech. Eng. 43 (1) (2024) 120-132.

[8]

W. Zhang, X.T. Feng, Z.B. Yao, L. Hu, Y.X. Xiao, G.L. Feng, W.J. Niu, Y. Zhang, Development and occurrence mechanisms of fault-slip rockburst in a deep tunnel excavated by drilling and blasting: a case study, Rock Mech. Rock Eng. 55 (2022) 5599-5618.

[9]

W. Zhang, L. Hu, Z.B. Yao, Y.R. Xiong, J. Zhao, T. Ma, S. Chen, Z. Xu, In-situ and experimental investigations of the failure characteristics of surrounding rock through granites with biotite interlayers in a tunnel, Eng. Geol. 343 (2024) 107816.

[10]

R. Patyńska, The consequences of rock burst hazard for Silesian companies in Poland, Acta Geodyn. Geomater. 10 (2) (2013) 227-235.

[11]

T.B. Zhao, W.Y. Guo, D.X. Zhang, Y.L. Tan, Y.C. Yin, Y. Tan, Y.J. Jiang, J.P. Yao, Theoretical framework for stress relief-support reinforcement cooperative control of rock bursts in deep coal mining, Geohaz. Mech. 2 (1) (2024) 49-57.

[12]

X.L. Li, S.J. Chen, S.M. Liu, Z.H. Li, AE waveform characteristics of rock mass under uniaxial loading based on hilbert-huang transform, J. Cent. South Univ. 28 (6) (2021) 1843-1856.

[13]

Y.Y. Di, E.Y. Wang, T. Huang, Identification method for microseismic, acoustic emission and electromagnetic radiation interference signals of rock burst based on deep neural networks, Int. J. Rock Mech. Min. Sci. 170 (2023) 105541.

[14]

H.R. Li, M.C. He, Y.F. Qiao, T. Cheng, Y.M. Xiao, Z.J. Gu, Mode I fracture properties and energy partitioning of sandstone under coupled static-dynamic loading: implications for rockburst, Theor. Appl. Fract. Mech. 127 (2023) 104025.

[15]

F.Z. Meng, J.H. Hang, Z.Y. Li, F.L. Wang, Z.F. Yue, Q.J. Cai, G.H. Cui, H. Zhou, The sequence of heating and loading affects shear properties of granite fractures under high temperature, Rock Mech. Rock Eng. 57 (2024) 6543-6566.

[16]

F.Z. Meng, H. Zhou, Z.Q. Wang, L.M. Zhang, L. Kong, S.J. Li, C.Q. Zhang, Experimental study on the prediction of rockburst hazards induced by dynamic structural plane shearing in deeply buried hard rock tunnels, Int. J. Rock Mech. Min. Sci. 86 (2016) 210-223.

[17]

Y.H. Li, J.P. Liu, X.D. Zhao, Y.J. Yang, Study on b-value and fractal dimension of acoustic emission during rock failure process, Rock Soil Mech. 30 (9) (2009) 2559-2563+2574.

[18]

K. Du, X.F. Li, C.Z. Yang, J. Zhou, S.J. Chen, K. Manoj, Experimental investigations on mechanical performance of rocks under fatigue loads and biaxial confinements, J. Cent. South Univ. 27 (10) (2020) 2985-2998.

[19]

B. Gutenberg, C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34 (4) (1994) 185-188.

[20]

C.P. Lu, G.J. Liu, Y. Liu, N. Zhang, J.H. Xue, L. Zhang, Microseismic multi- parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration, Int. J. Rock Mech. Min. Sci. 76 (2015) 18-32.

[21]

W. Cai, L.M. Du, Z.L. Li, J. Liu, S.Y. Gong, J. H. Microseismic multidimensional information identification and spatio-temporal forecasting of rock burst: a case study of yima yuejin coal mine, Henan, China, Chinese J. Geophys. 57 (8) (2014) 2687-2700.

[22]

H.P. Xie, W. Pariseau, Fractal character and mechanism of rock bursts, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 (1993) 343-350.

[23]

Y.Z. Lu, Z.L. Chen, B.Q. Wang, Seismological Methods for Earthquake Prediction, Seismol. Press, 1985.

[24]

L.Y. Wang, X.Z. Chen, C.Z. Zhu, P.Y. Chen, Study on the integrated parameter Rt of seismic activity and its application to earthquake prediction, Earthquake (2006) 54-60.

[25]

T.B. Li, W.H. Xu, C.C. Ma, H. Zhang, Y.X. Zhang, K.K. Dai, Research of technology and system of tunnel microseismic monitoring and rockburst early warning based on deep learning, Chin. J. Rock Mech. Eng. 43 (5) (2024) 1041-1063.

[26]

G.F. Liu, S.F. Li, G.L. Feng, B.R. Chen, J.B. Xu, C.H. Du, X.Q. Chen, Research on rockburst volume classification and discriminant method based on microseismic information, Chin. J. Rock Mech. Eng. 43 (3) (2024) 683-697.

[27]

A. Lesniak, Z. Isakow, Space-time clustering of seismic events and hazard assessment in the zabrze-bielszowice coal mine, Poland, Int. J. Rock Mech. Min. Sci. 46 (5) (2009) 918-928.

[28]

C. Srinivasan, S.K. Arora, S. Benady, Precursory monitoring of impending rockbursts in kolar gold mines from microseismic emissions at deeper levels, Int. J. Rock Mech. Min. Sci. 36 (7) (1999) 941-948.

[29]

L.Z. Tang, K.W. Xia,Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory, J. Cent. South Univ. Technol. 17 (5) (2010) 947-953.

[30]

Y.B. Zhang, P. Liang, X.X. Liu, S.J. Liu, B.Z. Tian, An experimental study of predicting rockburst in granitic roadway based on multiparameter normalization, Rock Soil Mech. 37 (1) (2016) 96-104.

[31]

S.R. Wang, C.Y. Li, W.F. Yan, Z.S. Zou, W.X. Chen, Multiple indicators prediction method of rock burst based on microseismic monitoring technology, Arab. J. Geosci. 10 (2017) 132-139.

[32]

A.C. Adoko, C. Gokceoglu, L. Wu, Q.J. Zuo, Knowledge-based and data-driven fuzzy modeling for rockburst prediction, Int. J. Rock Mech. Min. Sci. 61 (2013) 86-95.

[33]

W. Cai, L.M. Dou, M. Zhang, W.Z. Cao, J.Q. Shi, L.F. Feng, A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring, Tunn. Undergr. Space Technol. 80 (2018) 232-245.

[34]

S.Q. He, D.Z. Song, H. Mitri, X.Q. He, J.Q. Chen, Z.L. Li, Y.R. Xue, T. Chen, Integrated rockburst early warning model based on fuzzy comprehensive evaluation method, Int. J. Rock Mech. Min. Sci. 142 (2021) 104767.

[35]

W. Cai, L.M. Dou, G.Y. Si, A.Y. Cao, J. He, S. Liu, A principal component analysis/ fuzzy comprehensive evaluation model for coal burst liability assessment, Int. J. Rock Mech. Min. Sci. 81 (2016) 62-69.

[36]

Y.H. Guo, F.X. Jiang,Application of comprehensive fuzzy evaluation in burst- proneness risk of coal seam. 2009 2nd Int. Conf. Futr. Info. Tech. Mngt. Eng, 2009, pp. 404-407, 2009.

[37]

F.Q. Ren, Z.Y. Gao, K. Ma, S. Yang, Rockburst probability early warning method based on integrated infrared temperature and acoustic emission parameters, Int. J. Rock Mech. Min. Sci. 189 (2025) 106097.

[38]

B. Ke, M. Khandelwal, P.G. Asteris, A.D. Skentou, A. Mamou, D.J. Armaghani, Rock-burst occurrence prediction based on optimized naïve bayes models, IEEE Access 9 (2021) 91347-91360.

[39]

J.X. Wang, E.Y. Wang, W.X. Yang, B.L. Li, Z.H. Li, X.F. Liu, Rock burst monitoring and early warning under uncertainty based on multi-information fusion approach, Measurement 205 (2022) 112188.

[40]

E. Ghasemi, H. Gholizadeh, A. C. Adoko, Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach, Eng. Comput. 36 (1) 213-225.

[41]

Y.C. Zheng, H. Zhong, Y. Fang, W.S. Zhang, K. Liu, J. Fang, J. Sun, Rockburst prediction model based on entropy weight integrated with grey relational BP neural network, Adv. Civ. Eng. (1) (2019) 3453614, 2019.

[42]

M.W. Wang, X.Y. Xu, J. Li, J.L. Jin, F.Q. Shen, A novel model of set pair analysis coupled with extenics for evaluation of surrounding rock stability, Math. Probl. 2015 ( 2015) 1-9.

[43]

J.Y. Wu, X.F. Cao, Quantitative studies of global seismicity (1)-temporal variations of global shallow and deep seismic activity, Acta Seismol. Sin. 9 (1) (1987) 1-14.

[44]

J.C. Gu, F.S. Wei, The quantification of seismic activity: seismicity, Earthq. Res. China 3 (S1) (1987) 14-24.

[45]

C.Z. Zhu, L.Y. Wang, The principle of entropy and seismological research, J. Seismol. Res. 11 (6) (1988) 527-538.

[46]

I. Prigogine, R. Lefever, Theory of Dissipative Structures, Vieweg&Teubner Verlag, 1973, pp. 124-135.

[47]

T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol. 15 (3) (1977) 234-281.

[48]

J.C. Wei, Y.Y. Xu, D.L. Xie, C.Y. Liu, C.W. Zhong, The risk assessment of water bursting based on combination rule of distance function, Chin. Min. Mag. 30 (4) (2021) 162-167.

[49]

C. Zhang, Q. Wang, J.P. Chen, F.G. Gu, W. Zhang, Evaluation of debris flow risk in jinsha river based on combined weight process, Rock Soil Mech. 32 (3) (2011) 831-836.

[50]

X.H. Mao, A.K. Hu, R. Zhao, F. Wang, M.K. Wu, Evaluation and application of surrounding rock stability based on an improved fuzzy comprehensive evaluation method, Mathematics 11 (14) (2023) 3095.

[51]

S.G. Xu, T.X. Wang, S.D. Hu, Dynamic assessment of water quality based on a variable fuzzy pattern recognition model, Int. J. Environ. Res. Publ. Health 12 (2) (2015) 2230-2248.

[52]

W. Wang, F.Z. Meng, Z.F. Yue, G.H. Cui, Q.J. Cai, Z.Y. Li, D.L. Tian, H. Zhou, Z. Q. Wang, Influence of orientation of the intermediate principal stress on fracture reactivation in granite, J. Rock Mech. Geotech. Eng. 17 (2) (2025) 859-876.

[53]

W. Wang, F.Z. Meng, D.L. Tian, Y.T. Wen, Z.F. Yue, Q.J. Cai, H. Zhou, Role of unloading rate and minimum principal stress on fault activation with implication in fault-slip rockburst, Rock Mech. Rock Eng. 58 (2025) 1434-1453.

AI Summary AI Mindmap
PDF (8352KB)

414

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/