Development of geomechanics of highly compressed rocks and rock masses in Russia

V.V. Makarov , M.A. Guzev , V.N. Odintsev

Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (1) : 42 -58.

PDF (2920KB)
Geohazard Mechanics ›› 2025, Vol. 3 ›› Issue (1) : 42 -58. DOI: 10.1016/j.ghm.2025.02.002
research-article

Development of geomechanics of highly compressed rocks and rock masses in Russia

Author information +
History +
PDF (2920KB)

Abstract

A brief overview of the basic principles of geomechanics of highly compressed rocks and masses is presented. The historical path of formation of this new scientific branch of the classical geomechanics is shown. The scales and structural levels of the geomedium failure are identified. The issues of adequate mathematical models at various geomedium structural levels developing, as well as methods for determining the parameters of these models are considered. The object, subject, methods and principles of geomechanics of highly compressed rocks and masses are formulated as a complex discipline at the intersection of classical geomechanics and mesomechanics.

Keywords

Geomedium / Scale levels / Structural levels / Continuum model / Models parameters / Rock sample / Rock mass / Mesomechanics / Principles

Cite this article

Download citation ▾
V.V. Makarov, M.A. Guzev, V.N. Odintsev. Development of geomechanics of highly compressed rocks and rock masses in Russia. Geohazard Mechanics, 2025, 3(1): 42-58 DOI:10.1016/j.ghm.2025.02.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

V.V. Makarov: Writing - review & editing, Writing - original draft, Visualization, Funding acquisition, Formal analysis, Conceptualization. M.A. Guzev: Writing - original draft, Validation, Formal analysis, Data curation, Conceptualization. V.N. Odintsev: Writing - original draft, Investigation, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

All the authors declare that they have no known competing interests in this paper.

Acknowledgements

The authors grateful to Golosov Andrei for collecting and processing data of laboratory experiments with rock samples. This document is the results of the research project funded by Foundation of Far Eastern Federal University (No. D-231-22 dated July 05, 2022).

References

[1]

E.T. Brown, Fifty Years of the ISRM and Associated Progress in Rock Mechanics, 12th ISRM Congress, Beijing, 2011.

[2]

E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, V.N. Reva, F.P. Glushikhin, Y.S. Kuznetsov, Zonal disintegration of rocks around underground openings, Part 1: data of in Situ Observations, J. Min. Sci. 22 (1986) 157-168.

[3]

M.A. Guzev, A. Paroshin, Non-Euclidean model of the zonal disintegration of rocks around an underground opening, J. Appl. Mech. Tech. Phys. 42 (2001) 131-139.

[4]

L. Muller, Salzburg der felsbau. Theoretical Part, Springer Spektrum, Berlin, 1963, p. 1.

[5]

L. Muller, Fundamentals of rock mechanics. Lectures Held at the Department for Mechanics of Deformable Bodies, Intern Centre for Mechanical Sciences, Udine, 1969.

[6]

C. Fairhurst, What is the Strength of a Rock Mass? Progress in answering Müller’s (implicit) question, in: 5th Colloquium Rock Mechanics -Theory and Practice. Wien, 2010, pp. 87-110.

[7]

L. Muller, Technical parameters of rock and rock masses, in: Rock Mechanics, second ed., Springer, Vienna, 1981, pp. 15-34.

[8]

M.A. Sadovsky,Natural lumpiness of rock, Proceedings of the USSR Academy of Sciences 247 (1979) 829-831.

[9]

M.A. Sadovsky, L.G. Bolkhovitinov, V.F. Pisarenko, On the property of discreteness of mountain rocks, Academy of Sciences of the USSR 12 (1982) 3-18.

[10]

V.N. Nikolaevskiy, Mechanics of Porous and Fractured Medium, Nedra, Moscow, 1984.

[11]

[ 11.

[12]

L.G. Bolkhovitinov, V.F. Pisarenko, M.A. Sadovsky, Deformation of Geophysical Medium and Seismic Process, Nauka, Moscow, 1987.

[13]

P.A. Cundall, O.D.L. Strack, A distinct element model for granular assemblies, Geotechnique 29 (1979) 47-65.

[14]

J.R. Williams, G. Hocking, G.G.W. Mustoe, The Theoretical Basis of the Discrete Element Method, NUMETA, Rotterdam, 1985.

[15]

R.E. Goodman, R. Taylor, T. Brekke, A model for the mechanics of jointed rock, J. Soil Mech. Found Div. 94 (1968) 367-659.

[16]

V.N. Oparin, A.P. Tapsiev, On some patterns of fracturing around mining openings, Mining, methods for assessing and monitoring the impact hazard of rock masses, Frunze, Ilim (1979) 342-349.

[17]

G.R. Adams, A.J. Jager, Petroscopic observation of rock fracturing ahead of stop faces in deep-level gold mines, Jr. South African Inst. Mining and Metallurgy 80 (1980) 204-209.

[18]

E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, Zonal Disintegration of Rocks Around Underground Openings. Part 1: Data of Natural Observations, FTPRPI, Moscow, 1986, pp. 3-15.

[19]

E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, Zonal Disintegration of Rocks Around Underground Openings. Part 2: Failure of Rocks on Models from Equivalent Materials, FTPRPI, Moscow, 1986, pp. 3-12.

[20]

E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, Zonal Disintegration of Rocks Around Underground Openings. Part 3: Theoretical Representations, FTPRPI, Moscow, 1987, pp. 3-8.

[21]

E.I. Shemyakin, G.L. Fisenko, M.V. Kurlenya, V.N. Oparin, Zonal Disintegration of Rocks Around Underground Openings. Part 4: Practical Applications, FTPRPI, Moscow, 1989, pp. 3-9.

[22]

V.N. Reva, E.A. Tropp, Elastic-plastic Model of Zonal Disintegration of the Surroundings of Underground Development, VNIMI, St. Petersburg, 1995, pp. 125-130.

[23]

A. Kadic, D.G. Edelen,A Gauge Theory of Dislocations and Disclinations, 1983. Heidelberg, Berlin.

[24]

V.E. Panin, Y.V. Grinyaev, Structural Levels of Plastic Deformation and Failure, Nauka, Novosibirsk, 1990.

[25]

V.E. Panin, Fundamentals of physical mesomechanics, Phys. Mesomech. 1 (1998) 5-22.

[26]

V.P. Myasnikov, M.A. Guzev, V.V. Makarov, On the periodic nature of deformation of fractured rocks. Proceedings of the XI Russian Conference on Rock Mechanics, Publishing house GASU, St. Petersburg, 1997, pp. 333-337.

[27]

M.A. Guzev, A.A. Paroshin, Non-Euclidean model of zonal disintegration of rocks around underground openings, J. Appl. Mech. Tech. Phys. 3 (2000) 181-195.

[28]

V.V. Makarov, M.A. Guzev, Mechanism of Zonal Failure and Deformation of Rocks Around Underground Openings, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 1999, pp. 120-125.

[29]

P.V. Makarov, I.Yu Smolin, YuP. Stefanov, Nonlinear Mechanics of Geomaterials and Geomedium, Academic Publishing House Geo, Novosibirsk, 2007.

[30]

V.N. Oparin, A.P. Tapsiev, M.A. Rozenbaum, Zonal Disintegration of Rocks and Stability of Underground Openings, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2008.

[31]

M.A. Guzev, V.V. Makarov, Deformation and Failure of Highly Compressed Rocks Around Openings, Dalnauka, Vladivostok, 2007.

[32]

V.N. Odintsev, V.V. Makarov, Multilevel model of cleavage fracture in brittle rocks in compression, J. Min. Sci. 60 (2024) 320-331.

[33]

C. Fairhurst, N.G.W. Cook,The phenomenon of rock splitting parallel to a free surface under compressive stress, Proc. First Cong. Int. Soc. Rock Mech 1 (1966) 687-692. Lisbon.

[34]

E. Hoek, C.D. Martin, Fracture initiation and propagation in intact rock: a review, J. Rock Mech. Geotech. Eng. 6 (2014) 287-300.

[35]

H. Horii, S. Nemat-Nasser, Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. 319 (1986) 337-374.

[36]

V.N. Odintsev, Tension Failure of the Brittle Rock Mass, Publishing House of Research Institute of Comprehensive Exploitation of Mineral Resources RAS, Moscow, 1996.

[37]

R.V. Goldstein, N.M. Osipenko, About compression fracture, Phys. Mesomech. 22 (2019) 439-455.

[38]

L.N. Germanovich, A.V. Dyskin, M.N. Tsyrul'nikov, Mechanism of dilatancy and columnar failure of brittle rocks under uniaxial compression, Transactions of the USSR Academy of Sciences 313 (1990) 6-10.

[39]

Y. Zhang, S. Cui, Z. Yu, J. Cheng, Fracture characteristics of sliding fracture in brittle rock: analysis based on an improved equivalent fracture model, Front. Earth Sci. 10 (2022).

[40]

R.V. Goldshtein, V.M. Ladygin, N.M. Osipenko, A model of the fracture of a slightly porous material under compression or tension, Sov. Min. Sci. 1 (1974) 3-13.

[41]

A. Hedayat, F.A. Ochoa-Cornejo, Y. Khasawneh, Numerical Simulation of Fracture Initiation and Growth in Rock Specimens Containing a Flaw under Uniaxial Compression. Civil Engineering Program, Indiana University-Purdue University, Fort Wayne, 2015.

[42]

A. Bobet, H.H. Einstein, Numerical modeling of fracture coalescence in a model rock material, Int. J. Fract. 92 (1998) 221-252.

[43]

K. Kolari, A complete three-dimensional continuum model of wing-fracture growth in granular brittle solids, Int. J. Sol. structures 115-116 ( 2017) 27-42.

[44]

Xi Xun X. Wu Q. Guo M. Cai, Experimental investigation and numerical simulation on the fracture initiation and propagation of rock with pre-existing fractures, IEEE Access 8 (2020) 129636-129644.

[45]

L.V. Nikitin, V.N. Odintsev, A dilatancy model of tensile macrofractures in compressed rock, Fatig. Fract. Eng. Mater. Struct. 22 (1999) 1003-1009.

[46]

N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Nauka Publ., Moscow, 1966.

[47]

S. Marshak, B.A. Van Der Pluijm, Earth Structure:an Introduction to Structural Geology and Tectonics, WW Norton, New York, 2004.

[48]

V.V. Makarov, V.N. Odintsev, Structural hierarchy of block geomedium, Fundamental and applied issues of mining 10 (2023) 47-52.

[49]

Sh A. Mukhamediev, On discrete structure of geologic medium and continual approach to modeling its movements, Geodynamics & Tectonophysics 7 (2016) 347-381.

[50]

V.A. Lomakin, Theory of Elasticity of Inhomogeneous Bodies, second ed., Lenard, Moscow, 2014.

[51]

M.V. Rats, Heterogeneity of Rocks and Their Physical Properties, Nauka, Moscow, 1968.

[52]

P.V. Trusov, A.I. Shveikin, Multi-level Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Examples of Application, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2019.

[53]

V.N. Odintsev, V.V. Makarov, Multilevel model of cleavage fracture in brittle rocks in compression, J. Min. Sci. 60 (2024) 320-331.

[54]

V.E. Panin, YuV. Grinyaev, V.E. Egorushkin, Fundamentals of physical mesomechanics of structurally inhomogeneous medium, Bulletin of the Russian Academy of Sciences 4 (2010) 8-29.

[55]

S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam, 2013.

[56]

S.N. Zhurkov, V.S. Kuksenko, A.I. Slutsker, Micromechanics of the failure of polymers, Strength Mater. 3 (1971) 162-167.

[57]

D.A. Lockner, Quasi-static fault growth and shear fracture energy in granite, Nature 350 (1991) 39-42.

[58]

A.V. Dyskin, R.A. Salganik, Model of dilatancy of fragile materials with fractures in compression, Mechanics of Soils 6 (1987) 169-178.

[59]

V.B. Glagovskii, A.A. Khrapkov,Methods of Compilation of Geostructural Schemes (Models) of Rock Masses in the Foundations of Hydraulic Structures. Manual to SNIP 2.02.02-85, VNIIG, Leningrad, 1991.

[60]

K.V. Ruppeneit, Y.M. Liberman, Introduction to the Mechanics of Rocks, Gosgortekhizdat, Moscow, 1960.

[61]

M.A. Guzev, V.P. Myasnikov, A.A. Ushakov, Self-equilibrated stress fields in a continuous medium, J. Appl. Mech. Tech. Phys. 45 (2004) 558-566.

[62]

S.R. De Groot, P. Mazur, Non-equilibrium Thermodynamics, Dover Publications, New York, 2013.

[63]

M.A. Guzev, V.V. Makarov, A.A. Ushakov, Modeling elastic behavior of compressed rock samples in the pre-failure zone, J. Min. Sci. 41 (2005) 497-506.

[64]

M.A. Guzev, V.N. Odintsev, V.V. Makarov, Principals of geomechanics of highly stressed rock and rock masses, Tunn. Undergr. Space Technol. 81 (2018) 506-511.

[65]

M.A. Guzev, Non-classical solutions of a continuum model for rock descriptions, J. Rock Mech. Geotech. Eng. 6 (2014) 180-185.

[66]

G.N. Chernyshev, A.L. Popov, V.M. Kozintsev, I.I. Ponomarev, Residual Stresses in Deformable Solid Bodies, Nauka, Moscow, 1996.

[67]

M. A, M.A. Guzev, A.A. Ushakov, Critical behavior of the order parameter in the non-Euclidean model of zonal disintegration of rock rocks, Phys. Mesomech. 10 (2007) 31-37.

[68]

V.V. Makarov, M.A. Guzev, V.N. Odintsev, Periodical zonal character of damage near the openings in highly-stressed rock mass conditions, J. Rock Mech. Geotech. Eng. 8 (2016) 164-169.

[69]

B.G. Tarasov, M.A. Guzev, New Insight into the Nature of Size Dependence and the Lower Limit of Rock Strength. 8th International Symposium on Rockbursts and Seismicity in Mines, Geophysical Survey of Russian Academy of Sciences, Obninsk, 2013, pp. 31-40.

[70]

B.G. Tarasov, Shear fractures of extreme dynamics, Rock Mech. Rock Eng. 49 (2016) 3999-4021.

[71]

B.G. Tarasov, M.F. Randolph, Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism, Tectonophysics 667 (2016) 124-143.

[72]

J.C. Jaeger, N.G.W. Cook, R. Zimmerman, Fundamentals of Rock Mechanics, fourth ed., Blackwell Publishing, Carton, 2007.

AI Summary AI Mindmap
PDF (2920KB)

401

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/