Indirect evaluation of the influence of rock boulders in blasting to the geohazard: Unearthing geologic insights fused with tree seed based LSTM algorithm

Blessing Olamide Taiwo , Shahab Hosseini , Yewuhalashet Fissha , Kursat Kilic , Omosebi Akinwale Olusola , N. Sri Chandrahas , Enming Li , Adams Abiodun Akinlabi , Naseer Muhammad Khan

Geohazard Mechanics ›› 2024, Vol. 2 ›› Issue (4) : 244 -257.

PDF (3264KB)
Geohazard Mechanics ›› 2024, Vol. 2 ›› Issue (4) : 244 -257. DOI: 10.1016/j.ghm.2024.06.001
Research article

Indirect evaluation of the influence of rock boulders in blasting to the geohazard: Unearthing geologic insights fused with tree seed based LSTM algorithm

Author information +
History +
PDF (3264KB)

Abstract

Effective control of blasting outcomes depends on a thorough understanding of rock geology and the integration of geological characteristics with blast design parameters. This study underscores the importance of adapting blast design parameters to geological conditions to optimize the utilization of explosive energy for rock fragmentation. To achieve this, data on fifty geo-blast design parameters were collected and used to train machine learning algorithms. The objective was to develop predictive models for estimating the blast oversize percentage, incorporating seven controlled components and one uncontrollable index. The study employed a combination of hybrid long-short-term memory (LSTM), support vector regression, and random forest algorithms. Among these, the LSTM model enhanced with the tree seed algorithm (LSTM-TSA) demonstrated the highest prediction accuracy when handling large datasets. The LSTM-TSA soft computing model was specifically leveraged to optimize various blast parameters such as burden, spacing, stemming length, drill hole length, charge length, powder factor, and joint set number. The estimated percentage oversize values for these parameters were determined as 0.7 m, 0.9 m, 0.65 m, 1.4 m, 0.7 m, 1.03 kg/m3, 35 %, and 2, respectively. Application of the LSTM-TSA model resulted in a significant 28.1 % increase in the crusher's production rate, showcasing its effectiveness in improving blasting operations.

Keywords

Oversize boulder / Blasting / Image analysis / Downstream operation / Artificial intelligence

Cite this article

Download citation ▾
Blessing Olamide Taiwo, Shahab Hosseini, Yewuhalashet Fissha, Kursat Kilic, Omosebi Akinwale Olusola, N. Sri Chandrahas, Enming Li, Adams Abiodun Akinlabi, Naseer Muhammad Khan. Indirect evaluation of the influence of rock boulders in blasting to the geohazard: Unearthing geologic insights fused with tree seed based LSTM algorithm. Geohazard Mechanics, 2024, 2(4): 244-257 DOI:10.1016/j.ghm.2024.06.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of conflict of interest

The authors declare the following financial interests/personal relationships which maybe considered as potential competing interests. Blessing Olamide TaiwoJ is currently employed by HNF Global Resources Limited, Akoko Edo, Nigeria. N. Sri Chandrahas is currentlu employed by Mine Planning Division, GMMCO Technology Services (GTS), Hyderabad, 500008, India

Acknowledgements

This study is funded by China Scholarship Council (No.202006370006).

References

[1]

D. Ramesh, N.S. Chandrahas, M.S. Venkatramayya, M. Naresh, P. Talari, D.U.V.D. Prasad, et al., Effects of spacing-to-burden ratio and joint angle on rock fragmentation: an unmanned aerial vehicle and AI approach in overburden benches, ATG 2 (2023) 155-166.

[2]

N.S. Chandrahas, B.S. Choudhary, M.S. Venkataramayya, Competitive algorithm to balance and predict blasting outcomes using measured field data sets, Comput. Geosci. 27 (2023) 1087-1110.

[3]

T.M. Klap€otke, Chemistry of High-Energy Materials, De Gruyter, 2022.

[4]

S.P. Singh, R. Narendrula, Causes, implications and control of oversize during blasting,in: Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, 2009, pp. 311-317. Granada, Spain.

[5]

N.S. Chandrahas, Y. Fissha, B.S. Choudhary, B. Olamide Taiwo, M.S. Venkataramayya, T. Adachi, Experimental data - driven algorithm to predict muckpile characteristics in jointed overburden bench using unmanned aerial vehicle and AI tools, Int. J. Min. Reclamat. Environ. (2024) 1-35.

[6]

C. Joshua,Determination of Explosive Energy Partition Values in Rock Blasting through Small-Scale Testing, Doctoral Dissertation, University of Kentucky, 2015.

[7]

M. Naresh, N. Sri Chandrahas, G. Praful Kumar, T. Pradeep Kumar, K. Sravan Kumar, Harmonizing Blasting Efficiency: A Case Study on Evaluation and Optimization of Fragmentation Size and Ground Vibration, J Inst Eng India Ser D, 2024.

[8]

E.M. Kinyua, Z. Jianhua, R.M. Kasomo, D. Mauti, J. Mwangangi, A review of the influence of blast fragmentation on downstream processing of metal ores, Miner. Eng. 186 (2022) 107743.

[9]

E. Li, F. Yang, M. Ren, X. Zhang, J. Zhou, M. Khandelwal, Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms, J. Rock Mech. Geotech. Eng. 13 (2021) 1380-1397.

[10]

N.S. Chandrahas, B.S. Choudhary, M.V. Teja, M.S. Venkataramayya, N.S.R.K. Prasad, XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data, Appl. Sci. 12 (2022) 5269.

[11]

A. Al-Bakri, M. Hefni, A review of some nonexplosive alternative methods to conventional rock blasting, Open Geosci. 13 (2021) 431-442.

[12]

B.O. Taiwo, Y. Fissha, T. Palangio, A. Palangio, H. Ikeda, N.R. Cheepurupalli, et al., Assessment of charge initiation techniques effect on blast fragmentation and environmental safety: an application of WipFrag software, Mining 3 (2023) 532-551.

[13]

O.Y. Odeyemi, B.O. Taiwo, O. Alaba, Influence of explosive maximum instantaneous charge on blasting environmental impact, J. Sustain. Min. 22 (2023) 344-357.

[14]

S. Moray, N. Throop, J. Seryak, C. Schmidt, C. Fisher, M. D'Antonio, et al., Energy efficiency opportunities in the stone and asphalt industry,in: Twenty- Eighth Industrial Energy Technology Conference, 2006, pp. 71-83.

[15]

T. Norgate, N. Haque, Energy and greenhouse gas impacts of mining and mineral processing operations, J. Clean. Prod. 18 (2010) 266-274.

[16]

B. Klein, C. Wang, S. Nadolski, Energy-efficient comminution: best practices and future research needs,in: K. Awuah-Offei (Ed.), Energy Efficiency in the Minerals Industry, Springer International Publishing, Cham, 2018, pp. 197-211.

[17]

B. Gong, T. Zhao, I. Thusyanthan, C. Tang, Modelling rock fracturing by a novel implicit continuous to discontinuous method, Comput. Geotech. 166 (2024) 106035.

[18]

X. Feng, B. Gong, Z. Liang, S. Wang, C. Tang, H. Li, et al., Study of the dynamic failure characteristics of anisotropic shales under impact Brazilian splitting, Rock Mech. Rock Eng. 57 (2024) 2213-2230.

[19]

Y. Wang, B. Gong, C. Tang, X. Yang, Size effect and lateral pressure effect on the mechanical resistance of columnar jointed basalt, Int. J. Rock Mech. Min. Sci. 171 (2023) 105571.

[20]

W. Zhang, X. Gu, L. Tang, Y. Yin, D. Liu, Y. Zhang, Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge, Gondwana Res. 109 (2022) 1-17.

[21]

S. Liu, L. Wang, W. Zhang, W. Sun, Y. Wang, J. Liu, Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation, J. Rock Mech. Geotech. Eng. (2024) S167477552400088X.

[22]

E. Li, N. Zhang, B. Xi, Z. Yu, Y. Fissha, B.O. Taiwo, et al., Analysis and modelling of gas relative permeability in reservoir by hybrid KELM methods, Earth Sci. Inform. (2024).

[23]

W. Zhang, X. Gu, L. Hong, L. Han, L. Wang, Comprehensive review of machine learning in geotechnical reliability analysis: algorithms, applications and further challenges, Appl. Soft Comput. 136 (2023) 110066.

[24]

K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, LSTM: a search space odyssey, IEEE Transact. Neural Networks Learn. Syst. 28 (2017) 2222-2232.

[25]

Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Network. 5 (1994) 157-166.

[26]

M. Varsha, B. Poornima, H.P. Vinutha, K.M.P. Pavan, Predictive model for rice blast disease on climate data using long short-term memory and multi-layer perceptron: an empirical study on davangere district 25 (6) (2021) 4703-4722.

[27]

K. Awuah-Offei, Energy efficiency in mining: a review with emphasis on the role of operators in loading and hauling operations, J. Clean. Prod. 117 (2016) 89-97.

[28]

P.K. Singh, M.P. Roy, R.K. Paswan, Md Sarim, S. Kumar, R. Ranjan Jha, Rock fragmentation control in opencast blasting, J. Rock Mech. Geotech. Eng. 8 (2016) 225-237.

[29]

K. Awuah-Offei ( Ed.), Energy Efficiency in the Minerals Industry, Springer International Publishing, Cham, 2018.

[30]

S.V. Manyele, Investigation of excavator performance factors in an open-pit mine using loading cycle time, Engineering 9 (2017) 599-624.

[31]

H. Moomivand, H. Amini Khoshalan, J. Shakeri, H. Vandyousefi, Development of new comprehensive relations to assess rock fragmentation by blasting for different open pit mines using GEP algorithm and MLR procedure, Int. J. Min. Geol. Eng. (2022).

[32]

M. Danielsson, E. S€oderstr€om, H. Schunnesson, A. Gustafson, H. Fredriksson, D. Johansson, et al., Predicting rock fragmentation based on drill monitoring: a case study from Malmberget mine, Sweden, J. S. Afr. Inst. Min. Metall 122 (2022) 1-11.

[33]

Z. Jia, Z. Song, J. Fan, J. Jiang, Prediction of blasting fragmentation based on GWOELM, Shock Vib. 2022 ( 2022) 1-8.

[34]

R. Amoako, A. Jha, S. Zhong, Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach, Mining 2 (2022) 233-247.

[35]

B.O. Taiwo, Effect of charge load proportion and blast controllable factor design on blast fragment size distribution, J. Brilli. Eng. 3 (2022) 1-6.

[36]

C. Grundstrom, S. Kanchibotla, A. Jankovich, D. Thornton, D.D.N.A. Pacific, Blast fragmentation for maximising the sag mill throughput at Porgera Gold Mine, in: The annual conference on explosives and blasting technique 1, 2001, pp. 383-400.

[37]

R.M. Bhatawdekar, D.J. Armaghani, A. Azizi, Review of Empirical and Intelligent Techniques for Evaluating Rock Fragmentation Induced by Blasting. Environmental Issues of Blasting, Springer Nature Singapore, Singapore, 2021, pp. 21-39.

[38]

R.M. Bhatawdekar, R. Kumar, M.M. Sabri Sabri, B. Roy, E.T. Mohamad, D. Kumar, et al., Estimating flyrock distance induced due to mine blasting by extreme learning machine coupled with an equilibrium optimizer, Sustainability 15 (2023) 3265.

[39]

M. Monjezi, M. Rezaei, A.Y. Varjani, Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic, Int. J. Rock Mech. Min. Sci. 46 (2009) 1273-1280.

[40]

M. Monjezi, M. Rezaei, A. Yazdian, Prediction of backbreak in open-pit blasting using fuzzy set theory, Expert Syst. Appl. (2010).

[41]

A. Bahrami, M. Monjezi, K. Goshtasbi, A. Ghazvinian, Prediction of rock fragmentation due to blasting using artificial neural network, Eng. Comput. 27 (2011) 177-181.

[42]

A. Sayadi, M. Monjezi, N. Talebi, M. Khandelwal, A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak, J. Rock Mech. Geotech. Eng. 5 (2013) 318-324.

[43]

A. Karami, S. Afiuni-Zadeh, Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS), Int. J. Min. Sci. Technol. (2013).

[44]

S. Shams, M. Monjezi, V.J. Majd, D.J. Armaghani, Application of fuzzy inference system for prediction of rock fragmentation induced by blasting, Arabian J. Geosci. (2015).

[45]

E. Ebrahimi, M. Monjezi, M.R. Khalesi, D.J. Armaghani, Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm, Bull. Eng. Geol. Environ. (2016).

[46]

M. Hasanipanah, D. Jahed Armaghani, M. Monjezi, S. Shams, Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system, Environ. Earth Sci. 75 (2016) 1-12.

[47]

P.F. Asl, M. Monjezi, J.K. Hamidi, D.J. Armaghani, Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm, Eng. Comput. (2018).

[48]

J. Huang, P.G. Asteris, S. Manafi Khajeh Pasha, A.S. Mohammed, M. Hasanipanah, A new auto-tuning model for predicting the rock fragmentation: a cat swarm optimization algorithm, Eng. Comput. ( 2022).

[49]

R. Amoako, A. Jha, S. Zhong, Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach, Mining (2022).

[50]

N. Sri Chandrahas, B.S. Choudhary, M. Vishnu Teja, M.S. Venkataramayya, N.S.R. Krishna Prasad, XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data, Appl. Sci. (2022).

[51]

S. Hosseini, A. Mousavi, M. Monjezi, M. Khandelwal, Mine-to-crusher policy: planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach, Resour. Pol. 79 (2022) 103087.

[52]

S. Hosseini, R. Poormirzaee, M. Hajihassani, An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation, Int. J. Rock Mech. Min. Sci. 160 (2022) 105250.

[53]

A. Zangoei, M. Monjezi, D.J. Armaghani, A. Mehrdanesh, S. Ahmadian, Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques, Environ. Earth Sci. 81 (2022) 359.

[54]

A.W. Hatheway, The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974-2006, Environ. Eng. Geosci. 15 (2009) 47-48.

[55]

S. Nanda, B.K. Pal, Analysis of blast fragmentation using WipFrag, Int. J. Innov. Sci. Res. Technol. 5 (2020).

[56]

N.H. Maerz, J.A. Franklin, L. Rothenburg,D. Linncoursen, Measurement of Rock Fragmentation by Digital Photoanalysis, 1987. ISRM-6CONGRESS-1987-127.

[57]

J.A. Franklin, T. Katsabanis (Eds.),Measurement of Blast Fragmentation, first ed., Routledge, 2018.

[58]

P.A. Clemenshia, C. Deepa, Enhanced factor based whale optimization algorithm with improved weight based long short-term memory for cancer subtypes diagnosis, in: 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET), IEEE, Coimbatore, India, 2022, pp. 260-267.

[59]

J. Morgenroth, K. Kalenchuk, L. Moreau-Verlaan, M.A. Perras, U.T. Khan, A novel long-short term memory network approach for stress model updating for excavations in high stress environments, Georisk 17 (2023) 196-216.

[60]

Y. Wang, G. Zheng, Y. Li, F. Zhang, Full waveform prediction of blasting vibration using deep learning, Sustainability 14 (2022) 8200.

[61]

T.J. Mbah, H. Ye, J. Zhang, M. Long, Using LSTM and ARIMA to simulate and predict limestone price variations, Min. Metall. Explor. 38 (2021) 913-926.

[62]

S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software 69 (2014) 46-61.

[63]

H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili, Grey wolf optimizer: a review of recent variants and applications, Neural Comput. Appl. 30 (2018) 413-435.

[64]

J. Kennedy, R. Eberhart,Particle swarm optimization, in:Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, IEEE, Perth, WA, Australia, 1995, pp. 1942-1948.

[65]

C. Dong, G. Wang, Z. Chen, Z. Yu, A method of self-adaptive inertia weight for PSO, in: 2008 International Conference on Computer Science and Software Engineering, IEEE, Wuhan, China, 2008, pp. 1195-1198.

[66]

B. Vasumathi, S. Moorthi, Implementation of hybrid ANN-PSO algorithm on FPGA for harmonic estimation, Eng. Appl. Artif. Intell. 25 (2012) 476-483.

[67]

J.C. Bansal, P.K. Singh, M. Saraswat, A. Verma, S.S. Jadon, A. Abraham, Inertia weight strategies in particle swarm optimization, in: 2011 Third World Congress on Nature and Biologically Inspired Computing, IEEE, Salamanca, Spain, 2011, pp. 633-640.

[68]

R.R. Ema, A. Khatun, MdA. Hossain, M.R. Akhond, N. Hossain, MdY. Arafat, Protein secondary structure prediction using hybrid recurrent neural networks, J. Comput. Sci. 18 (2022) 599-611.

[69]

Z. Ding, Y. Yu, Y. Xia, Nonlinear hysteretic parameter identification using an attention-based long short-term memory network and principal component analysis, Nonlinear Dynam. 111 (2023) 4559-4576.

[70]

M. Monjezi, M. Rezaei, A. Yazdian Varjani, Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic, Int. J. Rock Mech. Min. Sci. 46 (2009) 1273-1280.

[71]

S. Kumar, D. Datta, S.K. Singh, Black hole algorithm and its applications, in: A. T.Azar, S.Vaidyanathan (Eds.),Computational Intelligence Applications in Modeling and Control, vol. 575, Springer International Publishing, Cham, 2015, pp. 147-170.

[72]

M.S. Kiran, TSA: tree-seed algorithm for continuous optimization, Expert Syst. Appl. 42 (2015) 6686-6698.

[73]

Z. Ding, J. Li, H. Hao, Structural damage identification by sparse deep belief network using uncertain and limited data, Struct. Control Health Monit. 27 (2020).

[74]

C. Kapucu, M. Cubukcu, A supervised ensemble learning method for fault diagnosis in photovoltaic strings, Energy 227 (2021) 120463.

[75]

N. Kumar Bhagat, A.K. Mishra, R.K. Singh, C. Sawmliana, P.K. Singh, Application of logistic regression, CART and random forest techniques in prediction of blastinduced slope failure during reconstruction of railway rock-cut slopes, Eng. Fail. Anal. 137 (2022) 106230.

[76]

X. Kong, X. Ling, L. Tang, W. Tang, Y. Zhang, Random forest-based predictors for driving forces of earth pressure balance (EPB) shield tunnel boring machine (TBM), Tunn. Undergr. Space Technol. 122 (2022) 104373.

[77]

M.S. Barkhordari, D.J. Armaghani, P. Fakharian, Ensemble machine learning models for prediction of flyrock due to quarry blasting, Int. J. Environ. Sci. Technol. 19 (2022) 8661-8676.

[78]

J. Zhou, P.G. Asteris, D.J. Armaghani, B.T. Pham, Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models, Soil Dynam. Earthq. Eng. 139 (2020) 106390.

[79]

H. Han, D. Jahed Armaghani, R. Tarinejad, J. Zhou, M.M. Tahir, Random forest and bayesian network techniques for probabilistic prediction of flyrock induced by blasting in quarry sites, Nat. Resour. Res. 29 (2020) 655-667.

[80]

Y. Dai, M. Khandelwal, Y. Qiu, J. Zhou, M. Monjezi, P. Yang, A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting, Neural Comput. Appl. 34 (2022) 6273-6288.

[81]

B. He, D.J. Armaghani, S.H. Lai, Assessment of tunnel blasting-induced overbreak: a novel metaheuristic-based random forest approach, Tunn. Undergr. Space Technol. 133 (2023) 104979.

[82]

A. Roy, R. Manna, S. Chakraborty, Support vector regression based metamodeling for structural reliability analysis, Probabilist. Eng. Mech. 55 (2019) 78-89.

[83]

D. Longjun, L. Xibing, X. Ming, L. Qiyue, Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters, Procedia Eng. 26 (2011) 1772-1781.

[84]

Y. Fissha, H. Ikeda, H. Toriya, T. Adachi, Y. Kawamura, Application of bayesian neural network (BNN) for the prediction of blast-induced ground vibration, Appl. Sci. 13 (2023) 3128.

[85]

E. Li, P. Segarra, J.A. Sanchidri_an S. G_omez A. Fern_andez, R. Navarro, et al., Application of percentile color intensities of borehole images for automatic fluorite grade assessment, Ore Geol. Rev. 163 (2023) 105790.

[86]

E. Li, J. Zhou, X. Shi, D. Jahed Armaghani, Z. Yu, X. Chen, et al., Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill, Eng. Comput. 37 (2021) 3519-3540.

[87]

W. Zhang, H. Li, Y. Li, H. Liu, Y. Chen, X. Ding, Application of deep learning algorithms in geotechnical engineering: a short critical review, Artif. Intell. Rev. 54 (2021) 5633-5673.

[88]

Y. Wang, L. Wang, S. Liu, P. Liu, Z. Zhu, W. Zhang, A comparative study of regional landslide susceptibility mapping with multiple machine learning models, Geol. J. (2023) 4902.

AI Summary AI Mindmap
PDF (3264KB)

508

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/