Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM) and scopus data text mining

Samuel Mores Geddam , C.A. Raj Kiran

Geohazard Mechanics ›› 2024, Vol. 2 ›› Issue (2) : 95 -107.

PDF (1105KB)
Geohazard Mechanics ›› 2024, Vol. 2 ›› Issue (2) : 95 -107. DOI: 10.1016/j.ghm.2024.03.001
Research article

Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM) and scopus data text mining

Author information +
History +
PDF (1105KB)

Abstract

In the 21st century, the surge in natural and human-induced disasters necessitates robust disaster management frameworks. This research addresses a critical gap, exploring dynamics in the successful implementation and performance monitoring of disaster management. Focusing on eleven key elements like Vulnerability and Risk Assessment, Training, Disaster Preparedness, Communication, and Community Resilience, the study utilizes Scopus Database for secondary data, employing Text Mining and MS-Excel for analysis and data management. IBM SPSS (26) and IBM AMOS (20) facilitate Exploratory Factor Analysis (EFA) and Structural Equation Modeling (SEM) for model evaluation.

The research raises questions about crafting a comprehensive, adaptable model, understanding the interplay between vulnerability assessment, training, and disaster preparedness, and integrating effective communication and collaboration. Findings offer actionable insights for policy, practice, and community resilience against disasters. By scrutinizing each factor's role and interactions, the research lays the groundwork for a flexible model. Ultimately, the study aspires to cultivate more resilient communities amid the escalating threats of an unpredictable world, fostering effective navigation and thriving.

Keywords

Disaster Management / Structural Equation Modeling (SEM) / Text Mining / Scopus Data / Exploratory Factor Analysis (EFA)

Cite this article

Download citation ▾
Samuel Mores Geddam, C.A. Raj Kiran. Enhancing disaster management effectiveness: An integrated analysis of key factors and practical strategies through Structural Equation Modeling (SEM) and scopus data text mining. Geohazard Mechanics, 2024, 2(2): 95-107 DOI:10.1016/j.ghm.2024.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Ritchie, P. Rosado, Rosado, Natural disasters, retrieved from ourworldindata.org, https://ourworldindata.org/natural-disaster,2022, December 7.

[2]

M.K. van Aalst, T. Cannon, I. Burton, Community level adaptation to climate change: the potential role of participatory community risk assessment, Global Environ. Change 18 (1) ( 2008) 165-179, https://doi.org/10.1016/ j.gloenvcha.2007.06.002.

[3]

A. Maskrey, Revisiting community-based disaster risk management, Environ. Hazards 10 (1) ( 2011) 42-52, https://doi.org/10.3763/ehaz.2011.0005.

[4]

J.M. Andri_c, D.G. Lu, Risk assessment of bridges under multiple hazards in operation period, Saf. Sci. 83 ( 2016) 80-92, https://doi.org/10.1016/ j.ssci.2015.11.001.

[5]

F. Linnekamp, A. Koedam, I.S.A. Baud, Household vulnerability to climate change: examining perceptions of households of flood risks in Georgetown and Paramaribo, Habitat Int. 35 (3) ( 2011) 447-456, https://doi.org/10.1016/ j.habitatint.2010.12.003.

[6]

D.E. Alexander, Scenario methodology for teaching principles of emergency management, Disaster Prev. Manag. 9 ( 2000) 89-97.

[7]

A.Y. Loke, C. Guo, A. Molassiotis, Development of disaster nursing education and training programs in the past 20 years (2000-2019): a systematic review, Nurse Educ. Today 99 ( 2021), https://doi.org/10.1016/j.nedt.2021.104809.

[8]

C.O. Jonson, J. Pettersson, J. Rybing, et al., Short simulation exercises to improve emergency department nurses’ self-efficacy for initial disaster management: controlled before and after study, Nurse Educ. Today 55 ( 2017) 20-25, https:// doi.org/10.1016/j.nedt.2017.04.020.

[9]

D. Alexander, Towards the development of standards in emergency management training and education, Disaster Prev. Manag. 12 (2) ( 2003) 113-123, https:// doi.org/10.1108/09653560310474223.

[10]

P. Coratza, J. de Waele, Geomorphosites and natural hazards: teaching the importance of geomorphology in society, Geoheritage 4 (3) ( 2012) 195-203, https://doi.org/10.1007/s12371-012-0058-0.

[11]

S. Tanaka, Parental leave and child health across OECD countriesy, Econ. J. 115 ( 2005) F7-F28. https://doi.org/10.1111/j.0013-0133.2005.00970.x.

[12]

R.W. Perry, M.K. Lindell, Preparedness for emergency response: guide-lines for the emergency planning process, Disasters 27 (Issue 4) ( 2003).

[13]

N. Kapucu, A. Professor, Collaborative emergency management: better community organising, better public preparedness and response. https://doi.org/10.1111/j.0 361-3666.2008.01037.x, 2008.

[14]

P.W. Hystad, P.C. Keller, Towards a destination tourism disaster management framework: long-term lessons from a forest fire disaster, Tourism Manag. 29 (1) ( 2008) 151-162, https://doi.org/10.1016/j.tourman.2007.02.017.

[15]

C. Vogel, S.C. Moser, R.E. Kasperson, et al., Linking vulnerability, adaptation, and resilience science to practice: pathways, players, and partnerships, Global Environ. Change 17 (3-4) ( 2007) 349-364, https://doi.org/10.1016/ j.gloenvcha.2007.05.002.

[16]

J. Kim, M. Hastak, Social network analysis: characteristics of online social networks after a disaster, Int. J. Inf. Manag. 38 (1) ( 2018) 86-96, https://doi.org/10.1016/ j.ijinfomgt.2017.08.003.

[17]

P. Panagiotopoulos, J. Barnett, A.Z. Bigdeli, S. Sams, Social media in emergency management: Twitter as a tool for communicating risks to the public, Technol. Forecast. Soc. Change 111 ( 2016) 86-96, https://doi.org/10.1016/ j.techfore.2016.06.010.

[18]

V. Filimonau, D. De Coteau, Tourism resilience in the context of integrated destination and disaster management (DM2), Int. J. Tourism Res. 22 (2) ( 2020) 202-222, https://doi.org/10.1002/jtr.2329.

[19]

T.L. O’Sullivan, C.E. Kuziemsky, D. Toal-Sullivan, et al., Unraveling the complexities of disaster management: a framework for critical social infrastructure to promote population health and resilience, Soc. Sci. Med. 93 ( 2013) 238-246, https://doi.org/10.1016/j.socscimed.2012.07.040.

[20]

Y. Jiang, B.W. Ritchie, Disaster collaboration in tourism: motives, impediments and success factors, J. Hospit. Tourism Manag. 31 ( 2017) 70-82, https://doi.org/ 10.1016/j.jhtm.2016.09.004.

[21]

R. Hoffmann, R. Muttarak, Learn from the past, prepare for the future: impacts of education and experience on disaster preparedness in the Philippines and Thailand, World Dev. 96 ( 2017) 32-51, https://doi.org/10.1016/j.worlddev.2017.02.016.

[22]

B.J. Yan, J. Zhang, H.L. Zhang, et al., Investigating the motivation-experience relationship in a dark tourism space: a case study of the Beichuan earthquake relics, China, Tourism Manag 53 ( 2016) 108-121, https://doi.org/10.1016/ j.tourman.2015.09.014.

[23]

D. Osberghaus, The effect of flood experience on household mitigation—evidence from longitudinal and insurance data, Global Environ. Change 43 ( 2017) 126-136, https://doi.org/10.1016/j.gloenvcha.2017.02.003.

[24]

D. Xu, L. Peng, S. Liu, X. Wang, Influences of risk perception and sense of place on landslide disaster preparedness in southwestern China, Int. J. Disaster Risk Sci. 9 (2) ( 2018) 167-180, https://doi.org/10.1007/s13753-018-0170-0.

[25]

K.A. Sullivan-Wiley, A.G. Short Gianotti, Risk perception in a multi-hazard environment, World Dev. 97 ( 2017) 138-152, https://doi.org/10.1016/ j.worlddev.2017.04.002.

[26]

C. Heitz, S. Spaeter, A.V. Auzet, et al., Local stakeholders’ perception of muddy flood risk and implications for management approaches: a case study in Alsace (France), Land Use Pol. 26 (2) ( 2009) 443-451, https://doi.org/10.1016/ j.landusepol.2008.05.008.

[27]

P. Tran, R. Shaw, G. Chantry, et al., GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet, Nam ( 2009). https://doi. org/10.1111/j.0361-3666.2008.01067.x.

[28]

C. Vogel, S.C. Moser, R.E. Kasperson, et al., Linking vulnerability, adaptation, and resilience science to practice: pathways, players, and partnerships, Global Environ. Change 17 (3-4) ( 2007) 349-364, https://doi.org/10.1016/ j.gloenvcha.2007.05.002.

[29]

K. Brundiers, H.C. Eakin, Leveraging post-disasterwindows of opportunities for change towards sustainability: a framework, Sustainability 10 (5) ( 2018), https:// doi.org/10.3390/su10051390.

[30]

A. B_anic_a, K. Kourtit, P. Nijkamp, Natural disasters as a development opportunity: a spatial economic resilience interpretation, Rev. Reg. Res. 40 (2) ( 2020) 223-249, https://doi.org/10.1007/s10037-020-00141-8.

[31]

H. Wang, A. Mostafizi, L.A. Cramer, et al., An agent-based model of a multimodal near-field tsunami evacuation: decision-making and life safety, Transport. Res. C Emerg. Technol. 64 ( 2016) 86-100, https://doi.org/10.1016/j.trc.2015.11.010.

[32]

Bodin D. Nohrstedt, Formation and performance of collaborative disaster management networks: evidence from a Swedish wildfire response, Global Environ. Change 41 ( 2016) 183-194, https://doi.org/10.1016/j.gloenvcha.2016.10.004.

[33]

F. Al-Nammari, M. Alzaghal, Towards local disaster risk reduction in developing countries: challenges from Jordan, Int. J. Disaster Risk Reduc. 12 ( 2015) 34-41, https://doi.org/10.1016/j.ijdrr.2014.11.005.

[34]

P. Adey, B. Anderson, Anticipating emergencies: Technologies of preparedness and the matter of security, Secur. Dialog. 43 (2) ( 2012) 99-117. https://doi.org/10.11 77/0967010612438432.

[35]

A. Jabbarzadeh, B. Fahimnia, S. Seuring, Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application, Transport. Res. E Logist. Transport. Rev. 70 (1) ( 2014) 225-244, https://doi.org/ 10.1016/j.tre.2014.06.003.

[36]

A. Jabbarzadeh, B. Fahimnia, J.B. Sheu, et al., Designing a supply chain resilient to major disruptions and supply/demand interruptions, Transp. Res. Part B Methodol. 94 ( 2016) 121-149, https://doi.org/10.1016/j.trb.2016.09.004.

[37]

V. Sword-Daniels, C. Eriksen, E.E. Hudson-Doyle, et al., Embodied uncertainty: living with complexity and natural hazards, J. Risk Res. 21 (3) ( 2018) 290-307, https://doi.org/10.1080/13669877.2016.1200659.

[38]

O. Cohen, D. Leykin, M. Lahad, et al., The conjoint community resiliency assessment measure as a baseline for profiling and predicting community resilience for emergencies, Technol. Forecast. Soc. Change 80 (9) ( 2013) 1732-1741, https:// doi.org/10.1016/j.techfore.2012.12.009.

[39]

L. Thornley, J. Ball, L. Signal, et al., Building community resilience: learning from the Canterbury earthquakes, Kotuitui 10 (1) ( 2015) 23-35, https://doi.org/ 10.1080/1177083X.2014.934846.

[40]

B. Pfefferbaum, R.L. Van Horn, R.L. Pfefferbaum, A conceptual framework to enhance community resilience using social capital, Clin. Soc. Work. J. 45 (2) ( 2017) 102-110, https://doi.org/10.1007/s10615-015-0556-z.

[41]

F. Demiroz, T.W. Haase, The concept of resilience: a bibliometric analysis of the emergency and disaster management literature, Local Govern. Stud. 45 (3) ( 2019) 308-327, https://doi.org/10.1080/03003930.2018.1541796.

[42]

S. Siriporananon, P. Visuthismajarn, Key success factors of disaster management policy: a case study of the Asian cities climate change resilience network in Hat Yai city, Thailand, Kasetsart J. Soc. Sci. 39 (2) ( 2018) 269-276, https://doi.org/ 10.1016/j.kjss.2018.01.005.

[43]

F. Yi, D. Deng, Y. Zhang, Collaboration of top-down and bottom-up approaches in the post-disaster housing reconstruction: evaluating the cases in Yushu Qinghai- Tibet Plateau of China from resilience perspective, Land Use Pol. 99 ( 2020), https://doi.org/10.1016/j.landusepol.2020.104932.

[44]

J. Zake, M. Hauser, Farmers' perceptions of implementation of climate variability disaster preparedness strategies in Central Uganda, Environ. Hazards 13 (3) ( 2014) 248-266, https://doi.org/10.1080/17477891.2014.910491.

[45]

R. Shaw, K. Goda, From disaster to sustainable civil society: the kobe experience, Disasters 28 (1) ( 2004).

[46]

H. Blanco, M. Alberti, R. Olshansky, et al. Shaken shrinking, hot, impoverished and informal: emerging research agendas in planning, Prog. Plann. 72 (4) ( 2009) 195-250, https://doi.org/10.1016/j.progress.2009.09.001.

[47]

C. Johnson, Strategic planning for post-disaster temporary housing. https://doi. org/10.1111/j.0361-3666.2007.01018.x, 2007.

[48]

J. Davidson, K. Powers, K. Hedayat, et al., Clinical practice guidelines for support of the family in the patient-centered intensive care unit: American College of Critical Care Medicine Task Force 2004-2005, Crit Care Med. 35 (2) ( 2007) 605-622, https://doi.org/10.1097/01.CCM.0000254067.14607.EB.

[49]

S. Zhong, R. Cheng, Y. Jiang, et al., Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand, Transport. Res. E Logist. Transport. Rev. 141 ( 2020), https://doi.org/10.1016/j.tre.2020.102015.

[50]

C. Burton, J.T. Mitchell, S.L. Cutter, Evaluating post-Katrina recovery in Mississippi using repeat photography, Disasters 35 (3) ( 2011) 488-509, https://doi.org/ 10.1111/j.1467-7717.2010.01227.x.

[51]

Y. Peng, L. Shen, X. Zhang, et al., The feasibility of concentrated rural settlement in a context of post-disaster reconstruction: a study of China, Disasters 38 (1) ( 2014) 108-124, https://doi.org/10.1111/disa.12032.

[52]

D. Bulley, Producing and governing community (through) resilience, Polit. 33 (4) ( 2013) 265-275, https://doi.org/10.1111/1467-9256.12025.

[53]

C. Begg, G. Walker, C. Kuhlicke, Localism and flood risk management in England: the creation of new inequalities? Environ. Plann. C Govern. Pol. 33 (4) ( 2015) 685-702, https://doi.org/10.1068/c12216.

[54]

A. Lukasiewicz, S. Dovers, M. Eburn, Shared responsibility: the who, what and how, Environ. Hazards 16 (4) ( 2017) 291-313, https://doi.org/10.1080/ 17477891.2017.1298510.

[55]

C. Begg, M. Ueberham, T. Masson, et al., Interactions between citizen responsibilization, flood experience and household resilience: insights from the 2013 flood in Germany, Int. J. Water Resour. Dev. 33 (4) ( 2017) 591-608, https:// doi.org/10.1080/07900627.2016.1200961.

[56]

Joseph Hair, William Black, Barry Babin, et al., Multivariate data analysis: a global perspective, 2010.

[57]

L. Hu, P.M. Bentler,Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives, Struct. Equ. Model.: A Multidiscip. J. 6 (1) ( 1999) 1-55, https://doi.org/10.1080/10705519909540118.

[58]

J.F. Hair, Multivariate data analysis, 2006.

[59]

D. Hooper, J. Coughlan, M. Mullen, Structural equation modeling: guidelines for determining model fit, Electron. J. Bus. Res. Methods 6 ( 2007).

AI Summary AI Mindmap
PDF (1105KB)

772

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/