Preliminary study on the determination of the Weibull modulus of strength distribution in quasi-brittle materials

Chengzhi Qi , Chunsheng Lu , A.I. Chanyshev , Xiaozhao Li , Xiaolei Qu

Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (2) : 103 -109.

PDF (1043KB)
Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (2) :103 -109. DOI: 10.1016/j.ghm.2023.05.002
research-article

Preliminary study on the determination of the Weibull modulus of strength distribution in quasi-brittle materials

Author information +
History +
PDF (1043KB)

Abstract

In this paper, how to determine the Weibull modulus of a fracture strength distribution is discussed with its physical implications for quasi-brittle materials. Based on the Markov chain assumption, it is shown that the lifetime (i.e., the time taken for formation of a critical defect) in a quasi-brittle material can be described by a gamma probabilistic distribution function. Prior to macroscopic failure, the effective number of energy barriers to be overcome is determined by the slope of the energy barrier spectrum, which is equivalent to the Weibull modulus. Based on a fracture mechanics model, the fracture energy barrier spectral slope and Weibull modulus can be calculated theoretically. Furthermore, such a model can be extended to take into account the crack in- teractions and defect-induced degradation. The predicted Weibull modulus is good agreement with that derived from available experimental results.

Keywords

Quasi-brittle materials / Weibull modulus / Fracture strength / Lifetime / Energy barrier overcoming

Cite this article

Download citation ▾
Chengzhi Qi, Chunsheng Lu, A.I. Chanyshev, Xiaozhao Li, Xiaolei Qu. Preliminary study on the determination of the Weibull modulus of strength distribution in quasi-brittle materials. Geohazard Mechanics, 2023, 1(2): 103-109 DOI:10.1016/j.ghm.2023.05.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Lawn, Fracture of brittle solids, Cambridge University Press, Cambridge, 1993.

[2]

R.A. Danzer, General strength distribution function for brittle materials, J. Eur.Ceram. Soc. 10 ( 1992) 461-472.

[3]

C. Lu, R. Danzer, F.D. Fischer, Fracture statistics of brittle materials: Weibull or normal distribution, Phys. Rev. E 65 ( 2002), 067102.

[4]

W. Weibull,A statistical theory of the strength of materials, Proc. R. Swed. Acad.Eng. Sci. 151 ( 1939) 1-45.

[5]

W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. 18 ( 1951) 293-297.

[6]

A. Taloni, M. Vodret, G. Costantini, S. Zapperi, Size effects on the fracture of microscale and nanoscale materials, Nat. Rev. Mater. 3 ( 2018) 211-224.

[7]

Z.P. Ba》zant, Y. Xi, Statistical size effect in quasi-brittle structure: I. Is Weibull theory applicable? J. Eng. Mech. 117 ( 1991) 2609-2622.

[8]

Z.P. Ba》zant, Y. Xi, Statistical size effect in quasi-brittle structure: II. Nonlocal theory, J. Eng. Mech. 117 ( 1991) 2623-2640.

[9]

Z.P. Ba》zant, S.D. Pang, Activation energy based on extreme value statistics and size effect in brittle and quasi-brittle fracture, J. Mech. Phys. Solid. 55 ( 2007) 91-134.

[10]

K. Wallin, The scatter in KIc results, Eng. Fract. Mech. 19 ( 1984) 1085-1093.

[11]

C. Lu, H. Xie, A physical limit of Weibull modulus in rock fracture, Int. J. Fract. 72 ( 1995) R55-R58.

[12]

F.W. DelRio, R.F. Cook, B.L. Boyce, Fracture strength of micro-and nano-scale silicon components, Appl. Phys. Rev. 2 ( 2015), 021303.

[13]

R. Ballarini, G. Pisano, G. Royer-Carfagni, The lower bound for glass strength and its interpretation with generalized Weibull statistics for structural applications, J. Eng. Mech. 142 ( 2016), 04016100.

[14]

R.F. Cook, F.W. DelRio, Material flaw populations and component strength distributions in the context of the Weibull function, Exp. Mech. 59 ( 2019) 279-293.

[15]

P.P. Millela, N. Bonora, On the dependence of the Weibull exponent on geometry and loading conditions and its implications on the fracture toughness probability curve using a load approach criterion, Int. J. Fract. 104 ( 2000) 71-87.

[16]

P. Schmid, G. Buck, C. Berthold, C. Lauer, K. Nickel, The mechanical properties of heat-treated rocks: a comparison between chert and silcrete, Archaeol. Anthrop.Sci. 11 ( 2018) 2489-2506.

[17]

K. Ono, A simple estimation method of Weibull modulus and verification with strength data. materials science, Appl. Sci. 9 ( 2019) 1575, https://doi.org/10.3390/app9081575.

[18]

M. Yalcinkaya, B. Birgo€ren, Bayesian confidence internal estomation of Weibull modulus under increasing failure rate, Gazi Univ. J. Sci. 34 ( 2020) 290-309.

[19]

M. Zhou, A crack theory-based bonded particle model for rock particles considering size effect on crushing strength, G'eotech. Lett. 11 (4) ( 2021) 340-349.

[20]

D. Wong, M. Anwar, S. Debnath, A. Hamid, S. Izman, The influence of matrix density on the Weibull modulus of natural fiber reinforced nanocomposites, Mater. Sci. Forum 1074 ( 2022) 3-9.

[21]

L. Afferrante, M. Ciavarella, E. Valenza, Is Weibull's modulus really a material constant? Example case with interacting collinear cracks, Int. J. Solid Struct. 43 ( 2006) 5147-5157.

[22]

J.L. Le,BallariniR. ZhuZ, Modeling of probabilistic failure of polycrystalline silicon MEMS structures, J. Am. Ceram. Soc. 98 ( 2015) 1685-1697.

[23]

Z.P. Ba》zant, J.L. Le, M.Z. Bazant,Scaling of strength and lifetime probability distributions of quasibrittle materials based on atomistic fracture mechanics, Proc. N. Acad. Sci. USA 106 (28) ( 2009) 11484-11489.

[24]

Z.P. Ba》zant, S.D. Pang,Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors, Proc. N. Acad. Sci. USA 103 (25) ( 2006) 9434-9439.

[25]

Z.P. Ba》zant, S.D. Pang, Scaling theory for quasibrittle structural failure, Proc. N.Acad. Sci. USA 101 (37) ( 2004) 13400-13407.

[26]

L.D. Landau, E.M. Lifshitz,Statistical Physics, third ed., Butterworth-Heinmann, Oxford, 1951. Part 1).

[27]

V.A. Petrov, V.I. Bashkarev, V.I. Vetegren, Physical basis for prediction of durability of structural materials, Politekhnika, St. Petersburg, 1994.

[28]

K.L. Chung, Markov Chain with stationary transition probability, Springer-Verlag, Berlin, 1960.

[29]

J.L. Le, Z.P. Ba》zant, Scaling of static fracture of quasi-brittle structures: strength,lifetime, and fracture kinetics, J. Appl. Mech. 79 ( 2012), 031006.

[30]

S. Bai, Y. Chen, S. Qiao, Y. Chen, M. Kang, Study on Weibull modulus of flexural strength for SiC at elevated temperatures, J. Mech. Strength 22 ( 2012) 312-314.

[31]

M. Kachanov, A simple technique of stress-analysis in elastic solids with many cracks, Int. J. Fract. 28 ( 1985) R11-R19.

[32]

M. Kachanov, Elastic solids with many cracks: a simple method of analysis, Int. J. Solid Struct. 23 ( 1987) 23-43.

[33]

M. Kachanov, J.P. Laures, 3-Dimensional problems of strongly interacting arbitrarily located penny-shaped cracks, Int. J. Fract. 41 ( 1989) 289-313.

[34]

H. Lekesiz, N. Katsube, S.I. Rokhlin, R.R. Seghi, The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks, Int. J. Solid Struct. 50 ( 2013) 186-200.

[35]

K. Kolari, A complete three-dimensional continuum model of wing-crack growth in granular brittle solids, Int. J. Solid Struct. 115 ( 2017) 27-42.

[36]

L.M. Kachanov, Introduction to continuum damage mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986.

[37]

M.F. Ashby, C.G. Sammis, The damage mechanics of brittle solids in compression, Pure Appl. Geophys. 133 ( 1990) 489-521.

[38]

R. Danzer, P. Supancic, J. Pascual, T. Lube, Fracture statistics of ceramics-Weibull statistics and deviations from Weibull statistics, Eng. Fract. Mech. 74 ( 2007) 2919-2932.

[39]

C. Lu, D. Vere-Jones, H. Takayasu, Avalanche behavior and statistical properties in a microcrack coalescence process, Phys. Rev. Lett. 82 ( 1999) 347-350.

[40]

M. Kachanov, V.V. Mishakin, On crack density, crack porosity, and the possibility to interrelate them, Int. J. Eng. Sci. 142 ( 2019) 185-189.

AI Summary AI Mindmap
PDF (1043KB)

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/