Prospect and research progress of detecting dynamic change in crustal stress by bedrock temperature

Shunyun Chen , Qiongying Liu , Peixun Liu , Yanqun Zhuo

Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (2) : 119 -127.

PDF (1478KB)
Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (2) :119 -127. DOI: 10.1016/j.ghm.2023.04.002
research-article

Prospect and research progress of detecting dynamic change in crustal stress by bedrock temperature

Author information +
History +
PDF (1478KB)

Abstract

A new method of detecting stress change by temperature (DSCT), has been recently proposed on the basis of the experimental results in laboratory, and verified by field observation. In this paper, at first, physical background is concisely introduced, and experimental researches are followed. Then, the key techniques are reviewed, and the main results on in-situ observations are also given in detail. At last, we emphasize on the prospects of this method for being investigated further. The potential prospect includes six contents: (1) to observe the tidal force and its secondary fluid thermal effect; (2) to study temperature response to change in direction of the stress change; (3) to carry out practical engineering application; (4) to analyze the strong earthquake risk, based on bedrock tem- perature observation; (5) to conduct in situ experiment on DSCT; (6) to explain quantitatively the satellite thermal infrared anomaly. In short, considering that the dynamic change of the crustal stress is a key parameter of earthquake forecasting or engineering application, the method of DSCT has important practical significance for earthquake risk or engineering applications.

Keywords

Detecting stress change by temperature (DSCT) / Crustal stress / Bedrock temperature / Co-seismic response / In situ experiment

Cite this article

Download citation ▾
Shunyun Chen, Qiongying Liu, Peixun Liu, Yanqun Zhuo. Prospect and research progress of detecting dynamic change in crustal stress by bedrock temperature. Geohazard Mechanics, 2023, 1(2): 119-127 DOI:10.1016/j.ghm.2023.04.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P.X. Liu, S.Y. Chen, L.Q. Liu, G.Q. Chen, J. Ma, An experiment on the infrared radiation of surficial rocks during deformation, Seismol. Geol. 26 (3) ( 2004) 502-511. (in Chinese)

[2]

S.Y. Chen, L.Q. Liu, P.X. Liu, J. Ma, G.Q. Ghen, Theoretical and experimental study on relationship between stress-strain and temperature variation, Sci. China Earth Sci. 52 (11) ( 2009) 1825-1834.

[3]

S. Chen, P. Liu, L. Liu, J. Ma, Bedrock temperature as a potential method for monitoring change in crustal stress: theory, in situ measurement, and a case history, J. Asian Earth Sci. 123 ( 2016) 22-33.

[4]

S. Chen, Y. Guo, P. Liu, Y. Zhuo, K. Wang, J. Ma, Theoretical and experimental investigations on temperature variations in granodiorite with a hole during biaxial loading and its potential implications for monitoring changes in the crustal stress, Geophys. J. Int. 215 (2) ( 2018) 996-1002.

[5]

S. Chen, P. Liu, Y. Guo, L. Liu, J. Ma,Co-seismic response of bedrock temperature to the Ms6.3 kangding earthquake on 22 november 2014 in sichuan, China, Pure Appl. Geophys. 176 (1) ( 2019) 97-117.

[6]

S. Chen, P. Liu, L. Chen, Q. Liu, Evidence from seismological observation for detecting dynamic change in crustal stress by bedrock temperature, Chin. Sci. Bull. 65 (22) ( 2020) 2395-2405.

[7]

D.A. Lockner, P.G. Okubo, Measurements of frictional heating in granite, J. Geophys. Res. Solid Earth 88 (B5) ( 1983) 4313-4320.

[8]

N.G. Geng, C.Y. Cui, M.D. Deng, et al., Remote sensing rock mechanics and its application prospects, Adv. Geophys. 8 (4) ( 1993) 1-7. (in Chinese)

[9]

L.X. Wu, J.Z. Wang, Features of infrared thermal image and radiation temperature of coal rocks loaded, Sci. China (D) 28 (1) ( 1998) 41-46. (in Chinese)

[10]

L.X. Wu, C.Y. Cui, N.G. Geng, J. Wang, Remote sensing rock mechanics (RSRM) and associated experimental studies, Int. J. Rock Mech. Min. Sci. 37 (6) ( 2000) 879-888.

[11]

S.J. Liu, L.X. Wu, Y.H. Wu, et al., Analysis of affecting factors and mechanics of infrared radiation coming from loaded rocks, Mine Surveying 3 ( 2003) 67-70. (in Chinese)

[12]

J. Ma, L.Q. Liu, P.X. Liu, S.P. Ma, Thermal precursory pattern of fault unstable sliding: an experimental study of en echelon faults, Chin. J. Geophys. 50 (4) ( 2007) 1141-1149. (in Chinese)

[13]

L.Y. Li, H.P. Xie, X. Ma, Y. Ju, T.W. Tang, Q.J. Fang, Experimental study on relationship between surface temperature and volumetric strain of rock under uniaxial compression, J. China Coal Soc. 37 (9) ( 2012) 1511-1515. (in Chinese)

[14]

X.Y. Liu, C.B. Hu, Y.L. Shi, Numerical simulation of temperature evolution during rock deformation process based on experimental data, Journal of University of Chinese Academy of Sciences 32 (5) ( 2015) 644-651. (in Chinese)

[15]

Y.Q. Ren, J. Ma, P.X. Liu, S.Y. Chen, Experimental study of thermal field evolution in the short-impending stage before earthquakes, Pure Appl. Geophys. (1) ( 2017) 1-13.

[16]

X. Yang, W. Lin, O. Tadai, X. Zeng, C. Yu, E.-C. Yeh, H. Li, H. Wang, Experimental and numerical investigation of the temperature response to stress changes of rocks,J. Geophys. Res. Solid Earth 122 ( 2017), 2016JB013645.

[17]

P. Liu, S. Chen, Q. Liu, Y. Guo, Y. Ren, Y. Zhuo, J. Feng, A potential mechanism of the satellite thermal infrared seismic anomaly based on change in temperature caused by stress variation: theoretical, experimental and field investigations. Remote sensing, Rem. Sens. 14 (22) ( 2022) 5697.

[18]

X. Yang, X. Zeng, H. Shi, C. Yu, X. Shi, X. Guo, Y. Wang, Z. Ren, J. Shao, H. Xu, X. Wei, S. Chen, P. Zhao, Z. Pang, Development progress of long-term seafloor heat flow monitoring system, Chin. J. Geophys. 65 (2) ( 2022).

[19]

Z.-H. Zhang, S.-Y. Chen, P.-X. Liu, Q.-Y. Liu, A high-precision temperature measurement system based on bridge-type constant current source and its significance for detecting dynamic change in crustal stress through bedrock temperature, Seismol. Geol. 43 (2) ( 2021) 459-469.

[20]

Z.H. Zhang, S.Y. Chen, P.X. Liu, A key technology for monitoring stress by temperature: multichannel temperature measurement system with high precision and low power consumption, Seismol. Geol. 40 (2) ( 2018) 499-510. (in Chinese)

[21]

X. Yang, X. Zhu, B. Xue, A high-resolution temperature sensor, Earthquake 38 (3) ( 2018) 181-188.

[22]

Y. Qin, X. Yang, B. Wu, Z. Sun, X. Shi, High resolution temperature measurement technique for measuring marine heat flow, Sci. China Technol. Sci. 56 ( 2013) 1773-1778.

[23]

G. Zhao, A. He, W. Ma, M. Chen, An analysis on comparative geothermal observations under different dynamic hackground, Acta Seismol. Sin. (Engl. Ed.) 33 (1) ( 2011) 51-61.

[24]

Q. Liu, S. Chen, L. Chen, P. Liu, Z. Yang, L. Lu, Detection of groundwater flux changes in response to two large earthquakes using long-term bedrock temperature time series, J. Hydrol. 590 ( 2020), 125245.

[25]

Q. Liu, S. Chen, L. Jiang, D. Wang, Z. Yang, L. Chen, Determining thermal diffusivity using near-surface periodic temperature variations and its implications for tracing groundwater movement at the eastern margin of the Tibetan Plateau, Hydrol.Process. 33 ( 2019) 1276-1286.

[26]

S.-Y. Chen, C.-Y. Song, W. Yan, Q.-Y. Liu, P.-X. Liu, Y.-Q. Zhuo, Z.-H. Zhang,Change in bedrock temperature before and after jiashi ms6.4 earthquake in xinjiang on january 19, 2020, Seismol. Geol. 43 (2) ( 2021) 447-458.

[27]

J.S. Hsieh, Principles of Thermodynamics, McGraw-Hill Book Company. Scripta Book Company, Washington D.C, 1975.

[28]

X.C. Yin, Solid Mechanics (In Chinese), Seismological Press, Beijing, 1985, pp. 43-44.

[29]

S.Y. Chen, J. Ma, P.X. Liu, L.Q. Liu, J.X. Jiang, A preliminary study on correlation between thermal infrared radiation of land surface and borehole strain, Prog. Nat. Sci. 18 (2) ( 2008) 145-153.

[30]

X. Yang, W. Lin, E.-C. Yeh, H. Xu, Z. Xu, Analysis on the mechanisms of coseismic temperature negative anomaly in fault zones, Chin. J. Geophys. 63 (4) ( 2020) 1422-1430.

[31]

S.Y. Chen, P.X. Liu, L.Q. Liu, J. Ma, A phenomenon of the rock temperature change prior to lushan earthquake observed in Kangding, Seismol. Geol. 35 (3) ( 2013) 634-640. (in Chinese)

[32]

L. Lu, S. Chen, Q. Liu, W. Yan, P. Liu, C. Song, J. Feng, L. Chen, Determining groundwater movement from bedrock temperature: a case study of Kashi area, Chin. J. Geophys. 64 (12) ( 2021) 4594-4606.

[33]

K. Aki, P. Richards,Quantitative Seismology, second ed., University Science Books, Sausalito, 2002.

[34]

Y. Okada, Internal deformation due to shear and tensile faults in a half-space, Bull.Seismol. Soc. Am. 82 (2) ( 1992) 1018-1040.

[35]

J. Lin, R.S. Stein, Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res. 109 ( 2004), B02303.

[36]

S. Toda, R.S. Stein, K. Richards-Dinger, S. Bozkurt, Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer, J. Geophys. Res. 110 ( 2005) B05S16.

[37]

G.X. Yi, F. Long, X.Z. Wen, M.J. Liang, S. Wang,Seismogenic structure of the M6.3 kangding earthquake sequence on 22 nov. 2014, southwestern China, Chin. J. Geophys. 58 (4) ( 2015) 1205-1219. (in Chinese)

[38]

Z.J. Xie, Y. Zheng, C.L. Liu, B. Shan, M.S. Riaz, X. Xiong, An integrated analysis of source parameters, seismogenic structure, and seismic hazards related to the 2014 MS 6.3 Kangding earthquake, China, Tectonophysics 712-713 ( 2017) 1-9.

[39]

H.S. Carslaw, J.C. J, Conduction of Heat in Solids, Oxford at the Clarendon Press, Oxford, 1959.

[40]

H. Kanamori, E. Brodsky, The physics of earthquakes, Rep. Prog. Phys. 67 ( 2004) 1429-1496.

[41]

J. Zhou, E. Pan, H. Sun, J. Xu, X. Chen, Temperature variation in a homogeneous sphere induced by the tide-generating force, Pure Appl. Geophys. 180 (2) ( 2022) 747-754.

[42]

D.A. Lockner, N.M. Beeler, Premonitory slip and tidal triggering of earthquakes, J. Geophys. Res. 104 (B9) ( 1999), 20,133-20,151.

[43]

A. Zang, O. Stephansson, Stress Field of the Earths Crust, Springer, Springer Dordrecht Heidelberg London New York, 2010.

[44]

C. Ljunggren, Y. Chang, T. Janson, R. Christiansson, An overview of rock stress measurement methods, Int. J. Rock Mech. Min. Sci. 40 (7-8) ( 2003) 975-989.

[45]

C. Fairhurst, Stress estimation in rock: a brief history and review, Int. J. Rock Mech. Min. Sci. 40 (7-8) ( 2003) 957-973.

[46]

Z.X. Ouyang, B.Y. Li, W.J. Jia, Z.R. Zhang, A borehole type instrument for monitoring of changing stress field in Earth's crust, Bull. Inst. Crust. Dynam. 2 ( 1988) 11-20 (in Chinese).

[47]

Z. Jiao, X. Shan, Pre-seismic temporal integrated anomalies from multiparametric remote sensing data, Rem. Sens. 14 (10) ( 2022) 2343.

[48]

Z.H. Jiao, X. Shan, Consecutive statistical evaluation framework for earthquake forecasting: evaluating satellite surface temperature anomaly detection methods,J. Asian Earth Sci. X 7 ( 2022), 100096.

[49]

S.Y. Chen, J. Ma, P.X. Liu, L.Q. Liu, Y.Q. Ren, Exploring the current tectonic activity with satellite remote sensing thermal information: a case of the Wenchuan earthquake, Ssmology and Geology 36 (3) ( 2014) 775-793.

[50]

S. Chen, P. Liu, T. Feng, D. Wang, Z. Jiao, L. Chen, Z. Xu, G. Zhang, Exploring changes in land surface temperature possibly associated with earthquake: case of the April 2015 Nepal Mw 7.9 earthquake, Entropy 22 (4) ( 2020) 377.

[51]

L.Q.-G. Yang Shao-Min, N.I.E. Zhao-Sheng, Qing-Liang Wang, Heng Li, Hua Liao, Kai Tan, Xue-Jun Qiao, Qi Wang, Coseismic displacement caused by the 2008 great Wenchuan earthquake derived from various types of geodetic data, Chin. J. Geophys. 55 (8) ( 2012) 2575-2588.

AI Summary AI Mindmap
PDF (1478KB)

43

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/