Simulation of electromagnetic high-frequency wave propagation processes in multilayer geo-structures

A.P. Khmelinin , A.I. Konurin , E.V. Denisova

Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (3) : 203 -207.

PDF (1147KB)
Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (3) :203 -207. DOI: 10.1016/j.ghm.2023.04.001
research-article

Simulation of electromagnetic high-frequency wave propagation processes in multilayer geo-structures

Author information +
History +
PDF (1147KB)

Abstract

The paper describes the research findings on georadar detection of hydraulic fractures in hydrocarbon reservoirs. Numerical and physical modeling enables studying effect exerted by the electromagnetic properties of the created fracture fill and by the properties of the enclosing formation on the coefficient of high-frequency EM wave reflection from the interface.

Keywords

Electromagnetic properties / Reflection coefficient / Plane electromagnetic wave / Hydraulic fracture / Georadar / Radarogram

Cite this article

Download citation ▾
A.P. Khmelinin, A.I. Konurin, E.V. Denisova. Simulation of electromagnetic high-frequency wave propagation processes in multilayer geo-structures. Geohazard Mechanics, 2023, 1(3): 203-207 DOI:10.1016/j.ghm.2023.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Hoversten, М. Commer,Electromagnetic characterization of hydraulic fracture shape and permeability, in:77th EAGE Conference and Exhibition, 2015.

[2]

Patent RU2412225C2, Methods and Compositions to Determine Crack Geometry in Underground Formations, 2011. McDaniel Robert R., McCarthy Scott M., Smith Michael//Pub. 20.02.

[3]

Patent US 9817152, Methods and Means for Creating Three-Dimensional Borehole Image Data/, 2017. Andrii Sofiienko, David Ponce, Ådne Voll, Philip Teague//Pub. 14.11.

[4]

Schuster Carl, Detection within the Wellbore of Seismic Signals Created by Hydraulic Fracturing 10.2118/7448-MS, 1978.

[5]

N. Li, L. Fang, W. Sun, X. Zhang, C. Dong, Evaluation of borehole hydraulic fracturing in coal seam using the microseismic monitoring method, Rock Mech. Rock Eng. 54 (1-19) ( 2021).

[6]

X. Wang, Evaluation of underground hydraulic fracturing using transient electromagnetic method, Environ. Sci. Pollut. Control Ser. 26 (1-12) ( 2019).

[7]

Z. Jiang, Q. Li, Q. Hu, J. Chen, X. Li, X. Wang, Y. Xu, Underground microseismic monitoring of a hydraulic fracturing operation for CBM reservoirs in a coal mine, Energy Sci. Eng. 7 ( 2019).

[8]

Dong-ming Zhang, Yang Han, Zi Rao, Ou Zhong-yu, Ping Tang, Research on application of transient electromagnetic method in hydraulic fracturing, Geotech. Geol. Eng. 38 ( 2020).

[9]

G. Hoversten, C. Schwarzbach, Monitoring hydraulic fracture volume using borehole to surface EM and conductive proppant, October, Geophysics 86 (1) ( 2020) 1-76.

[10]

G. Hoversten, C. Schwarzbach, Monitoring Hydraulic-Fracture Volume Using Surface-To-Borehole EM and Conductive Proppant, SEG Technical Program Expanded Abstracts, 2018, pp. 863-867.

[11]

G. Hoversten, C. Schwarzbach, P. Belliveau, Eldad Haber, R. Shekhtman,Borehole to surface electromagnetic monitoring of hydraulic fractures, in:Conference: 79th EAGE Conference and Exhibition, 2017.

[12]

M. Commer, S. Finsterle, G. Hoversten, Three-dimensional fracture continuum characterization aided by surface time-domain electromagnetics and hydrogeophysical joint inversion—proof-of-concept, Comput. Geosci. 24 ( 2020) 1-15.

[13]

T. Palisch, W. Al-Tailji, L. Bartel, C. Cannan, M. Czapski, K. Lynch,Recent advancements in far-field proppant detection, in:SPE Hydraulic Fracturing Technology Conference, 2016.

[14]

T. Palisch, W. Al-Tailji, L. Bartel, C. Cannan, J. Zhang, M. Czapski, K. Lynch,Far- field proppant detection using electromagnetic methods—latest field results, in:SPE Hydraulic Fracturing Technology Conference and Exhibition, 2018.

[15]

Patent RU22374438, Method for Controlling the Development of a Hydraulic Fracture and its Geometry, O. N. Zhuravlev, D.A. Koroteev, M. Charara//Publ, 2009, p. 18.

[16]

Patent US No. 6330914, Method and Apparatus for Tracking Hydraulic Fractures in Unconsolidated and Weakly Cemented Soils and Sediments, Hocking Grant, Wells Samuel L//Publ. 18.12, 2001.

[17]

Patent RU22695411, A Method for Determining the Geometry of Cracks during Hydraulic Fracturing, G. V. Paderin, E.V. Shel//Publ, 2019, p. 21.

[18]

R. Kadlec, P. Fiala, The response of layered materials to EMG waves from a pulse source, Prog. Electromagn. Res. 42 ( 2015) 179-187.

[19]

R. Kadlec, P. Fiala, Electromagnetic wave propagation in heterogeneous structures, Piers Online 6 ( 2010) 613-616.

[20]

M.S. Sudakova, M.L. Vladov, M.R. Sadurtdinov, Effect of conductivity on reflection coefficient of an electromagnetic wave, Vestn. Mosk. Univ. 1 ( 2018) 100-106.Series 4 GEOLOG.

[21]

Z. Jia, S. Liu, L. Zhang, B. Hu, J. Zhang, Weak signal extraction from lunar penetrating radar channel 1 data based on local correlation, Electronics 8 ( 2019) 573.

[22]

W. Wang, S. Liu, X. Shen, W. Zheng, 3D imaging algorithm of directional borehole radar based on root-MUSIC, Rem. Sens. 2021), 13 (15), 2957.

[23]

C.S. Bristow, H.M. Jol, Ground Penetrating Radar in Sediments, The Geological Society Publishing House, UK, London, 2003.

[24]

D.J. Daniels, Ground Penetrating Radar second ed., The Institution of Electrical Engineers, UK, London, 2004.

[25]

H.M. Jol, Ground Penetrating Radar: Theory and Applications[M], Elsevier Science, UK, London, 2009.

AI Summary AI Mindmap
PDF (1147KB)

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/