Efficiently identifying coalbed methane enrichment areas by detecting and locating low-frequency signals in the coal mine

Siyu Miao , Guanwen Cheng , Haijiang Zhang , Yuqi Huang , Ning Gu , Huasheng Zha , Ji Gao

Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (1) : 86 -93.

PDF (2805KB)
Geohazard Mechanics ›› 2023, Vol. 1 ›› Issue (1) :86 -93. DOI: 10.1016/j.ghm.2022.12.003
research-article

Efficiently identifying coalbed methane enrichment areas by detecting and locating low-frequency signals in the coal mine

Author information +
History +
PDF (2805KB)

Abstract

Low-frequency signals have been widely found in the conventional oil/gas field and volcanic region as well as during hydraulic fracturing of unconventional oil/gas reservoirs. Their generation mechanism has been ascribed to the flow of gas/fluid in the fractures, which can induce the Krauklis wave around fractures and can further excite low-frequency seismic body wave signals at diffraction points. Thus, it is theoretically feasible to determine the gas/fluid enrichment areas and migration pathways by locating the low-frequency signals. Here we have utilized a surface dense seismic array deployed above the Sijiazhuang coal mine in Shanxi province to detect and locate such low-frequency signals that are dominant in the frequency range of 1.5-4.0 Hz. Waveform migration- based location method is employed to locate these signals that have low signal to noise ratios. We further compare the distribution of low-frequency signals and coalbed methane concentrations that are estimated based on ambient noise tomography result with the same seismic array. The spatial consistency between low-frequency signals and coalbed methane enrichment areas suggests that detecting and locating low-frequency signals with a surface seismic array is an efficient way to identify gas enrichment areas and potential gas migration pathways.

Keywords

Coalbed methane / Enrichment areas / Efficiently detecting / Low-frequency signals / Coal mine

Cite this article

Download citation ▾
Siyu Miao, Guanwen Cheng, Haijiang Zhang, Yuqi Huang, Ning Gu, Huasheng Zha, Ji Gao. Efficiently identifying coalbed methane enrichment areas by detecting and locating low-frequency signals in the coal mine. Geohazard Mechanics, 2023, 1(1): 86-93 DOI:10.1016/j.ghm.2022.12.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Song, B. Lin, Z. Zhong, T. Liu, Dynamic evolution of gas flow during coalbed methane recovery to reduce greenhouse gas emission: a case study, ACS Omega 7 (33) ( 2022) 29211-29222.

[2]

E. Pettinelli, S.E. Beaubien, A. Zaja, et al., Characterization of a CO 2 gas vent using various geophysical and geochemical methods, Geophysics 75 (3) ( 2010) B137-B146.

[3]

A. Raza, R. Gholami, R. Rezaee, et al., Significant aspects of carbon capture and storage-A review, Petroleum 5 (4) ( 2019) 335-340.

[4]

P. Miller, S. Dasgupta, D. Shelander, Seismic imaging of migration pathways by advanced attribute analysis, Alaminos Canyon 21, Gulf of Mexico, Mar. Petrol. Geol. 34 (1) ( 2012) 111-118.

[5]

E.M. Graham, N.L. Bangs, M.J. Hornbach, et al., Three-dimensional gas migration and gas hydrate systems of south Hydrate Ridge, offshore Oregon, hydrate. ridge, Master Thesis, The University of Texas at Austin, 2010, p. 102, 2152/ETD-UT-2011- 05-3248.

[6]

Y. Xie, R. Li, X.H. Wang, et al., Review on the accumulation behavior of natural gas hydrates in porous sediments, J. Nat. Gas Sci. Eng. 83 ( 2020), 103520.

[7]

Gernon M. Thomas, et al., Gas migration pathways, controlling mechanisms and changes in sediment acoustic properties observed in a controlled sub-seabed CO 2 release experiment, Int. J. Greenh. Gas Control38 ( 2015) 26-43.

[8]

M. Zajc, N. Rman, Ground Penetrating Radar for Detecting Subsurface Features of Active Gas Vents — Mofettes in Slovenia, 2018, pp. 1-4.

[9]

C.M. Steelman, D.R. Klazinga, A.G. Cahill, et al., Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT, J. Contam. Hydrol. 205 ( 2017) 12-24.

[10]

R.J. Arts, J. Baradello, F. Girard, et al., Results of geophysical monitoring over a leaking natural analogue site in Italy, Energy Proc. 1 ( 2009) 2269-2276.

[11]

S. Dangel, M.E. Schaepman, E.P. Stoll, et al., Phenomenology of tremor-like signals observed over hydrocarbon reservoirs, J. Volcanol. Geoth. Res. 128 (1) ( 2003) 135-158.

[12]

K.O. Rabiu, R. Van der Helm, N. Mumford, et al., Geoelectrical characterisation of CO2-water systems in porous media: application to carbon sequestration, Environ. Earth Sci. 79 (13) ( 2020) 1-12.

[13]

X. Zhou, V.R. Lakkaraju, M. Apple, et al., Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO 2 leakage, Int. J. Greenh. Gas Control 7 (none) ( 2012) 20-29.

[14]

A. Annunziatellis, S.E. Beaubien, S. Bigi, et al., Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO 2 geological storage, Int. J. Greenh. Gas Control 2 (3) ( 2008) 353-372.

[15]

S. Hannis, A. Chadwick, J. Pearce, et al., Review of Offshore Monitoring for CCS Projects, 2015. July.

[16]

K. Wang, C.A. Tang, K. Ma, et al., An automatic recognition method of microseismic signals based on S transformation and improved Gaussian mixture model, Adv. Civ. Eng 2020 ( 2020) 24, 8825990.

[17]

L. Shu, Z. Liu, K. Wang, et al., Characteristics and classification of microseismic signals in heading face of coal mine: implication for coal and gas outburst warning, Rock Mech. Rock Eng. 55 (11) ( 2022) 6905-6919.

[18]

S. Yin, Z. Li, D. Song, et al., Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading, Int. J. Min. Sci. Technol. 31 (5) ( 2021) 901-912.

[19]

A.J. Dougherty, B.Y. Lynne, Utilizing ground penetrating radar and infrared Thermography to image vents and fractures in geothermal environments, Transact.- Geotherm. Res. Council 35 ( 2011) 743-749.

[20]

E.H. Saenger, S.M. Schmalholz, M.A. Lambert, et al., A passive seismic survey over a gas field: analysis of low-frequency anomalies, Geophysics 74 (2) ( 2009) O29.

[21]

R. Graf, S.M. Schmalholz, Y. Podladchikov, et al., Passive low frequency spectral analysis: exploring a new field in geophysics, World Oil 228 (1) ( 2007).

[22]

M. Landrø, L. Amundsen, Low-frequency Seismic Noise: the Music of Oil?, 2008.

[23]

A. Goertz, B. Schechinger, B. Witten, et al., Extracting subsurface information from ambient seismic noise—a case study from Germany, Geophysics 77 (4) ( 2012) KS13-31.

[24]

N. Riahi, A. Goertz, B. Birkelo, et al., A statistical strategy for ambient seismic wavefield analysis: investigating correlations to a hydrocarbon reservoir, Geophys. J. Int. 192 (1) ( 2012) 148-162.

[25]

A.Y. Rozhko, Effective fluid bulk modulus in the partially saturated rock and the amplitude dispersion effects, J. Geophys. Res. Solid Earth 125 (3) ( 2020), e2019JB018693.

[26]

L. Li, J. Tan, B. Schwarz, et al., Recent advances and challenges of waveform-based seismic location methods at multiple scales, Rev. Geophys. 58 ( 2020), e2019RG000667.

[27]

H. Kao, S.J. Shan, The source-scanning algorithm: mapping the distribution of seismic sources in time and space, Geophys. J. Int. 157 (2) ( 2004) 589-594.

[28]

P.M. Duncan, Is there a future for passive seismic? First Break 23 (6) ( 2005).

[29]

F. Grigoli, S. Cesca, M. Vassallo, et al., Automated seismic event location by travel- time stacking: an application to mining induced seismicity, Seismol Res. Lett. 84 (4) ( 2013) 666-677.

[30]

N.S. Neidell, M.T. Taner, Semblance and other coherency measures for multichannel data, Geophysics 36 ( 1971) 482-497.

[31]

B.L.N. Kennett, Stacking three-component seismograms, Geophys. J. Int. 141 ( 2000) 263-269.

[32]

A. Haris, S.P. Silaban, R. Syahputra, et al., Time reverse modeling of hydrocarbon detection for passive seismic source localization: a case study of synthetics and real data from the South Sumatra basin, Indonesia, GEOMATE J. 13 (39) ( 2017) 185-190.

[33]

A. Haris, A. Riyanto, R. Syahputra, et al., Integrating a microtremor survey and time reverse modeling over a hydrocarbon reservoir: a case study of Majalengka field, West Java Basin, Indonesia, J. Geophys. Eng. 16 (1) ( 2019) 16-29.

[34]

K. Obara, Nonvolcanic deep tremor associated with subduction in southwest Japan, Science 296 (5573) ( 2002) 1679-1681.

[35]

A.G. Wech, K.C. Creager, Automated detection and location of Cascadia tremor, Geophys. Res. Lett. 35 (20) ( 2008).

[36]

C.S. Larmat, R.A. Guyer, P.A. Johnson, Tremor source location using time reversal: selecting the appropriate imaging field, Geophys. Res. Lett. 36 (22) ( 2009).

[37]

Y.Q. Huang, H.S. Zha, et al., Predicting the distribution of coalbed methane by ambient noise tomography with a dense seismic array, Chin. J. Geophys. 64(11)( 2021), 3997-4011. (in Chinese)

[38]

G.D. Bensen, M.H. Ritzwoller, M.P. Barmin, et al., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Roy. Astron. Soc. 169 (3) ( 2010) 1239-1260.

[39]

M.S. Longuet-Higgins, A theory of the origin of microseisms, Phil. Trans. Roy. Soc.Lond. Math. Phys. Sci. 243 (857) ( 1950) 1-35.

[40]

K. Hasselmann, A statistical analysis of the generation of microseisms, Rev.Geophys. 1 (2) ( 1963) 177-210.

[41]

I. Das, M.D. Zoback, Long-period, long-duration seismic events during hydraulic fracture stimulation of a shale gas reservoir, Lead. Edge 30 (7) ( 2011) 778-786.

[42]

J.B. Tary, M. Van der Baan, B. Sutherland, et al., Characteristics of fluid-induced resonances observed during microseismic monitoring, J. Geophys. Res. Solid Earth 119 (11) ( 2014) 8207-8222.

[43]

A. Helmstetter, L. Moreau, B. Nicolas, et al., Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argenti、ere, France): evidence for hydraulic fracturing? J. Geophys. Res.: Earth Surf. 120 (3) ( 2015) 402-416.

[44]

M. Zecevic, G. Daniel, D. Jurick, On the nature of long-period long-duration seismic events detected during hydraulic fracturing, Geophysics 81 (3) ( 2016) KS109-KS117.

[45]

B.A. Chouet, Long-period volcano seismicity: its source and use in eruption forecasting, Nature 380 (6572) ( 1996) 309-316.

[46]

M.D.M. Go’mez, C.R.A. Torres, Unusual low-frequency volcanic seismic events with slowly decaying coda waves observed at Galeras and other volcanoes, J. Volcanol. Geoth. Res. 77 (1-4) ( 1997) 173-193.

[47]

H. Kumagai, B.A. Chouet, M. Nakano, Temporal evolution of a hydrothermal system in Kusatsu-Shirane Volcano, Japan, inferred from the complex frequencies of long- period events, J. Geophys. Res. Solid Earth 107 (B10) (2002). ESE 9-1-ESE 9-10.

[48]

I. Molina, H. Kumagai, H. Yepes, Resonances of a volcanic conduit triggered by repetitive injections of an ash-laden gas, Geophys. Res. Lett. 31 (3) ( 2004).

[49]

H.C. Pu, C.H. Lin, Y.C. Lai, et al., Active volcanism revealed from a seismicity conduit in the long-resting tatun volcano group of Northern Taiwan, Sci. Rep. 10 (1) ( 2020) 1-11.

[50]

C.H. Lin, K.I. Konstantinou, W.T. Liang, et al., Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan, Geophys. Res. Lett. 32 (10) ( 2005).

[51]

S. De Angelis, Analyses of unusual long-period earthquakes with extended coda recorded at Katmai National Park, Alaska, USA, Geophys. Res. Lett. 33 (7) ( 2006).

[52]

K.I. Konstantinou, C.H. Lin, W.T. Liang, Seismicity characteristics of a potentially active quaternary volcano: the tatun volcano group, northern Taiwan, J. Volcanol. Geoth. Res. 160 (3-4) ( 2007) 300-318.

[53]

K.I. Konstantinou, Tornillos modeled as self-oscillations of fluid filling a cavity: application to the 1992-1993 activity at Galeras volcano, Colombia, Phys. Earth Planet. In. 238 ( 2015) 23-33.

[54]

N.M. Shapiro, D.V. Droznin, S.Y. Droznina, et al., Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer, Nat. Geosci. 10 (6) ( 2017) 442-445.

[55]

S. Cesca, J. Letort, H.N.T. Razafindrakoto, et al., Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation, Nat. Geosci. 13 (1) ( 2020) 87-93.

[56]

O. Melnik, V. Lyakhovsky, N.M. Shapiro, et al., Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas, Nat. Commun. 11 (1) ( 2020) 1-7.

[57]

L. Burlini, S. Vinciguerra, G. Di Toro, et al., Seismicity preceding volcanic eruptions: new experimental insights, Geology 35 (2) ( 2007) 183-186.

[58]

P.M. Benson, S. Vinciguerra, P.G. Meredith, et al., Laboratory simulation of volcano seismicity, Science 322 (5899) ( 2008) 249-252.

[59]

J. Clarke, L. Adam, J. Sarout, et al., The relation between viscosity and acoustic emissions as a laboratory analogue for volcano seismicity, Geology 47 (6) ( 2019) 499-503.

[60]

V. Korneev, Slow waves in fractures filled with viscous fluid, Geophysics 73 (1) ( 2008) N1-N7.

[61]

V.A. Korneev, Krauklis wave in a stack of alternating fluid-elastic layers, Geophysics 76 (6) ( 2011) N47-N53.

[62]

M. Frehner, S.M. Schmalholz, Finite-element simulations of Stoneley guided-wave reflection and scattering at the tips of fluid-filled fractures, Geophysics 75 (2) ( 2010) T23-T36.

[63]

B.P. Lipovsky, E.M. Dunham, Vibrational modes of hydraulic fractures: inference of fracture geometry from resonant frequencies and attenuation, J. Geophys. Res.Solid Earth 120 (2) ( 2015) 1080-1107.

[64]

P.J.R. Shih, M. Frehner, Laboratory evidence for Krauklis-wave resonance in fractures and implications for seismic coda wave analysis, Geophysics 81 (6) ( 2016) T285-T293.

[65]

I. Bayuk, G. Goloshubin, Krauklis waves as indicator of fractured zones in reservoir rocks: rock-physics modeling,in:2017 SEG International Exposition and Annual Meeting, OnePetro, 2017.

[66]

B. Steiner, E. H Saenger, S.M. Schmalholz, Time reverse modeling of low-frequency microtremors: application to hydrocarbon reservoir localization, Geophys. Res. Lett. 35 ( 2008a), L03307.

[67]

B. Steiner, E.H. Saenger, S.M. Schmalholz, Time reverse modeling of low-frequency microtremors: application to hydrocarbon reservoir localization, Geophys. Res. Lett. 35 (3) ( 2008b) 122-125.

PDF (2805KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

/