Amplified gene expressions were implicated in the gastric carcinogenesis of the intestinal subtype

Karthik Balakrishnan

Genome Instability & Disease ›› 2026, Vol. 7 ›› Issue (1) : 6

PDF
Genome Instability & Disease ›› 2026, Vol. 7 ›› Issue (1) :6 DOI: 10.1007/s42764-025-00175-7
Original Research Paper
research-article

Amplified gene expressions were implicated in the gastric carcinogenesis of the intestinal subtype

Author information +
History +
PDF

Keywords

Gastric cancer / Intestinal subtype / Hub genes / Expression profiles

Cite this article

Download citation ▾
Karthik Balakrishnan. Amplified gene expressions were implicated in the gastric carcinogenesis of the intestinal subtype. Genome Instability & Disease, 2026, 7(1): 6 DOI:10.1007/s42764-025-00175-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdullah AR, Gamal El-Din AM, El-Mahdy HA, Ismail Y, El-Husseiny AA. The crucial role of fascin-1 in the pathogenesis, metastasis, and chemotherapeutic resistance of breast cancer. Pathology, Research and Practice, 2024, 254 155079

[2]

Balakrishnan K. Hepatocellular carcinoma stage: An almost loss of fatty acid metabolism and gain of glucose metabolic pathways dysregulation. Medical Oncology, 2022, 39(12): 247

[3]

Balakrishnan K. Salt-driven chromatin remodeling associated with senescence dysregulation plays a crucial role in the carcinogenesis of gastric cancer subtype. Computational Toxicology, 2023, 25 100262

[4]

Balakrishnan K. The hepatocellular carcinoma (HCC) stage carcinogenesis is associated with genomic instability features. Human Gene, 2023, 38 201228

[5]

Balakrishnan K. Diffuse subtype-specific gastric carcinogenesis associated with dysregulation of Notch signaling pathways. Genome Instability & Disease, 2024, 5(3116-126

[6]

Balakrishnan K. Lactate dehydrogenase isoform expressions differing impacts on gastrointestinal carcinogenesis. Human Gene, 2024, 39 201243

[7]

Balakrishnan K. Mitochondrial dysregulation is a key regulator of gastric cancer subtype carcinogenesis. Genome Instability & Disease, 2024

[8]

Balakrishnan K. The transcriptional dysregulation of choline catabolism genes was implicated in HCC stage-specific carcinogenesis. Genome Instability & Disease, 2025

[9]

Balakrishnan K, Chen Y, Dong J. Amplification of Hippo signaling pathway genes is governed and implicated in the serous subtype-specific ovarian carcino-genesis. Cancers, 2024, 16(9): 1781

[10]

Balakrishnan K, Chen Y, Dong J. Amplified cell cycle genes identified in high-grade serous ovarian cancer. Cancers, 2024, 16(162783

[11]

Balakrishnan K, Ganesan K. Occurrence of differing metabolic dysregulations, a glucose driven and another fatty acid centric in gastric cancer subtypes. Functional & Integrative Genomics, 2020, 20(6813-824

[12]

Balakrishnan K, Ganesan K. Identification of oncogenic signaling pathways associated with the dimorphic metabolic dysregulations in gastric cancer subtypes. Medical Oncology, 2022, 39(9 132

[13]

Balakrishnan K, Panneerpandian P, Devanandan HJ, Sekar BT, Rayala SK, Ganesan K. Salt-mediated transcriptional and proteasomal dysregulations mimic the molecular dysregulations of stomach cancer. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 2019, 61 104588

[14]

Balakrishnan K, Xiao Y, Chen Y, Dong J. Elevated expression of cell adhesion, metabolic, and mucus secretion gene clusters associated with tumorigenesis, metastasis, and poor survival in pancreatic ductal adenocarcinoma. Cancers, 2024, 16(23): 4049

[15]

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: Archive for functional genomics data sets- -update. Nucleic Acids Research, 2013, 41(Database issueD991-995

[16]

Bland JM, Altman DG. The logrank test. BMJ (Clinical Research Ed.), 2004, 328(7447 1073

[17]

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2012, 2(5): 401-404

[18]

Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, Creighton CJ, Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25: 18-27

[19]

Chang Z, Gao Y, Chen P, Gao W, Zhao W, Wu D, Liang W, Chen Z, Chen L, Xi H. THBS2 promotes gastric cancer progression and stemness via the Notch signaling pathway. American Journal of Cancer Research, 2024, 14(7): 3433-3450

[20]

Chen Y, Jia K, Xie Y, et al.. The current landscape of gastric cancer and gastroesophageal junction cancer diagnosis and treatment in China: A comprehensive nationwide cohort analysis. Journal of Hematology & Oncology, 2025, 18: 42

[21]

Cui X, Shan T, Qiao L. Collagen type IV alpha 1 (COL4A1) silence hampers the invasion, migration and epithelial-mesenchymal transition (EMT) of gastric cancer cells through blocking Hedgehog signaling pathway. Bioengineered, 2022, 13(4): 8972-8981

[22]

Davis S, Meltzer PS. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007, 23(141846-1847

[23]

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 1988, 44(3): 837-845

[24]

Fang X, Chen D, Yang X, Cao X, Cheng Q, Liu K, Xu P, Wang Y, Xu J, Zhao S, Yan Z. Cancer associated fibroblasts-derived SULF1 promotes gastric cancer metastasis and CDDP resistance through the TGFBR3-mediated TGF-β signaling pathway. Cell Death Discovery, 2024, 10(1): 1-12

[25]

Fu C, Duan S, Zhou X, Meng Y, Chen X. Overexpression of COL11A1 confers tamoxifen resistance in breast cancer. NPJ Breast Cancer, 2024, 10(1): 1-10

[26]

Gong L-B, Zhang C, Yu R-X, Li C, Fan Y-B, Liu Y-P, Qu X-J. FKBP10 acts as a new biomarker for prognosis and lymph node metastasis of gastric cancer by bioinformatics analysis and in vitro experiments. OncoTargets and Therapy, 2020, 13: 7399-7409

[27]

Guo J, Ma X, Liu D, Wang F, Xia J, Zhang B, Zhao P, Zhong F, Chen L, Long Q, Jiang L, Zhang S, Liao N, Wang J, Wu W, Sun J, Huang M, Cheng Z, Huang G, Zou C. A distinct subset of urothelial cells with enhanced EMT features promotes chemotherapy resistance and cancer recurrence by increasing COL4A1-ITGB1 mediated angiogenesis. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2024, 76 101116

[28]

Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Human Immunology, 2021, 82(11): 801-811

[29]

Huang H, Sun R, Xu Y, Liu R, Chen Z. PMEPA1 promotes gastric cancer cell proliferation by regulating the ubiquitin-mediated degradation of 14-3-3σ and promoting cell cycle progression. Brazilian Journal of Medical and Biological Research, 2024, 57 e13985

[30]

Huang R, Gu W, Sun B, Gao L. Identification of COL4A1 as a potential gene conferring trastuzumab resistance in gastric cancer based on bioinformatics analysis. Molecular Medicine Reports, 2018, 17(5): 6387-6396

[31]

Huang Y, Shao Y, Yu X, Chen C, Guo J, Ye G. Global progress and future prospects of early gastric cancer screening. Journal of Cancer, 2024, 15(10): 3045-3064

[32]

Hur JY, Chao J, Kim K, Kim ST, Kim K-M, Klempner SJ, Lee J. High-level FGFR2 amplification is associated with poor prognosis and lower response to chemotherapy in gastric cancers. Pathology, Research and Practice, 2020, 216(4 152878

[33]

Hur K, Han T-S, Jung E-J, Yu J, Lee H-J, Kim WH, Goel A, Yang H-K. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. The Journal of Pathology, 2012, 228(1): 88-98

[34]

Jelski W, Mroczko B. Molecular and circulating biomarkers of gastric cancer. International Journal of Molecular Sciences, 2022, 23(14): 7588

[35]

Jiang P, Sinha S, Aldape K, Hannenhalli S, Sahinalp C, Ruppin E. Big data in basic and translational cancer research. Nature Reviews. Cancer, 2022, 22(11625-639

[36]

Kuwata T. Molecular classification and intratumoral heterogeneity of gastric adenocarcinoma. Pathology International, 2024, 74(6): 301-316

[37]

Lauren P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathologica Et Microbiologica Scandinavica, 1965, 64: 31-49

[38]

Li A, Li J, Lin J, Zhuo W, Si J. COL11A1 is overexpressed in gastric cancer tissues and regulates proliferation, migration and invasion of HGC-27 gastric cancer cells in vitro. Oncology Reports, 2017, 37(1): 333-340

[39]

Li C, Wong WH. Parmigiani G, Garrett ES, Irizarry RA, Zeger SL. DNA-chip analyzer (dChip). The analysis of gene expression data: methods and software, 2003, Cham, Springer120141

[40]

Li S, Huang X-T, Wang M-Y, Chen D-P, Li M-Y, Zhu Y-Y, Yu Y, Zheng L, Qi B, Liu J-Q. FSCN1 promotes radiation resistance in patients with PIK3CA gene alteration. Frontiers in Oncology, 2021, 11 653005

[41]

Li Y, Feng T, Wang Q, Wu Y, Wang J, Zhang W, Kong Q. High expression of SULF1 is associated with adverse prognosis in breast cancer brain metastasis. Animal Models and Experimental Medicine, 2024

[42]

Li Z, Shi J, Zhang N, Zheng X, Jin Y, Wen S, Hu W, Wu Y, Gao W. FSCN1 acts as a promising therapeutic target in the blockade of tumor cell motility: A review of its function, mechanism, and clinical significance. Journal of Cancer, 2022, 13(8): 2528-2539

[43]

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Systems, 2015, 1(6): 417-425

[44]

Liu R, Zou Z, Chen L, Feng Y, Ye J, Deng Y, Zhu X, Zhang Y, Lin J, Cai S, Tang Z, Liang Y, Lu J, Zhuo Y, Han Z, Ling X, Liang Y, Wang Z, Zhong W. FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to the HIF2α blockade by facilitating LDHA phosphorylation. Cell Death & Disease, 2024, 15(1): 64

[45]

Luan F, Li X, Cheng X, Huangfu L, Han J, Guo T, Du H, Wen X, Ji J. TNFRSF11B activates Wnt/β-catenin signaling and promotes gastric cancer progression. International Journal of Biological Sciences, 2020, 16(111956-1971

[46]

Martinez MJ, Lyles RDZ, Peinetti N, Grunfeld AM, Burnstein KL. Inhibition of the serine/threonine kinase BUB1 reverses taxane resistance in prostate cancer. iScience, 2023, 26(9 107681

[47]

Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. Royal Society Open Science, 2018, 5(12 181006

[48]

Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Tsherniak A. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics, 2017, 49(12): 1779-1784

[49]

Nagy Á, Lánczky A, Menyhárt O, Győrffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Scientific Reports, 2018, 8: 9227

[50]

Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics analyses in oncology: A review of machine learning methods and tools. Frontiers in Oncology, 2020, 10: 1030

[51]

Rezaei Z, Ranjbaran J, Safarpour H, Nomiri S, Salmani F, Chamani E, Larki P, Brunetti O, Silvestris N, Tavakoli T. Identification of early diagnostic biomarkers via WGCNA in gastric cancer. Biomedicine & Pharmacotherapy, 2022, 145 112477

[52]

Salimian N, Peymani M, Ghaedi K, Hashemi M, Rahimi E. Collagen 1A1 (COL1A1) and Collagen11A1(COL11A1) as diagnostic biomarkers in Breast, colorectal and gastric cancers. Gene, 2024, 892 147867

[53]

Sawazaki S, Oshima T, Sakamaki K, Aoyama T, Sato T, Shiozawa M, Yoshikawa T, Rino Y, Imada T, Masuda M. Clinical significance of tensin 4 gene expression in patients with gastric cancer. In Vivo (Athens, Greece), 2017, 31(6): 1065-1071

[54]

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 2024, 74(112-49

[55]

Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 2004, 3 3

[56]

Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumor Biology, 2017, 39(7 1010428317714626

[57]

Stahl D, Braun M, Gentles AJ, Lingohr P, Walter A, Kristiansen G, Gütgemann I. Low BUB1 expression is an adverse prognostic marker in gastric adenocarcinoma. Oncotarget, 2017, 8(44): 76329-76339

[58]

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15545-15550

[59]

Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression profiling. American Journal of Obstetrics and Gynecology, 2006, 195(2): 373-388

[60]

Wang K, Shen K, Wang J, Yang K, Zhu J, Chen Y, Liu X, He Y, Zhu X, Zhan Q, Shi T, Li R. BUB1 potentiates gastric cancer proliferation and metastasis by activating TRAF6/NF-κB/FGF18 through m6A modification. Life Sciences, 2024, 353 122916

[61]

Wang Y, Lu Y, Xu C. Tensin 4 facilitates aerobic glycolysis, migration and invasion of colorectal cancer cells through the β-catenin/c-Myc signaling pathway. Oncology Letters, 2024, 28(2): 356

[62]

Wen F, Yang S, Cai W, Zhao M, Qin L, Jiao Z. Exploring the role of PMEPA1 in gastric cancer. Molecular and Cellular Probes, 2023, 72 101931

[63]

Wilson CL, Miller CJ. Simpleaffy: A BioConductor package for Affymetrix quality control and data analysis. Bioinformatics, 2005, 21(183683-3685

[64]

Wu Y-H, Chou C-Y. Collagen XI alpha 1 chain, a novel therapeutic target for cancer treatment. Frontiers in Oncology, 2022, 12 925165

[65]

Xie M, Liang L, Yu L, Shi J, Lei Y, Huang J, Cai X. The integration of bulk and single-cell sequencing data revealed the function of FKBP10 in the gastric cancer microenvironment. Translational Cancer Research, 2024, 13(2): 975-988

[66]

Yang J, Li X, Chen S, Li G, Pu P, Yang Y, Wu W, Geng Y, Liu Y. GPRC5A promotes gallbladder cancer metastasis by upregulating TNS4 via the JAK2-STAT3 pathway. Cancer Letters, 2024, 598 217067

[67]

Yang M, Lu Z, Yu B, Zhao J, Li L, Zhu K, Ma M, Long F, Wu R, Hu G, Huang L, Chou J, Gong N, Yang K, Li X, Zhang Y, Lin C. COL5A1 promotes the progression of gastric cancer by acting as a ceRNA of miR-137-3p to upregulate FSTL1 expression. Cancers, 2022, 14(133244

[68]

Zhang J-R, Hou P, Wang X-J, Weng Z-Q, Shang-Guan X-C, Wang H, You F, Lin B-Q, Huang Z-Y, Chen X-Q. TNFRSF11B suppresses memory CD4+ T cell infiltration in the colon cancer microenvironment: A multiomics integrative analysis. Frontiers in Immunology, 2021, 12 742358

[69]

Zhang S, Yang H, Xiang X, Liu L, Huang H, Tang G. THBS2 is closely related to the poor prognosis and immune cell infiltration of gastric cancer. Frontiers in Genetics, 2022, 13 803460

[70]

Zhang X, Su G-H, Bao T-S, He W-P, Wang Y-Y, Zhou Y-Q, Xie J-X, Wang F, Lu R, Zhang S, Yi S-Q, Li Q, Jiang S-H, Li H, Hu L-PP, Li J, Xu J. TNS4 promotes lymph node metastasis of gastric cancer by interacting with integrin Β1 and inducing the activation of fibroblastic reticular cell. Cancer Cell International, 2025, 25(1204

[71]

Zhao T, Chen Z, Liu W, Ju H, Li F. Identification of hub genes associated with gastric cancer via bioinformatics analysis and validation studies. International Journal of General Medicine, 2023, 16: 4835-4848

RIGHTS & PERMISSIONS

Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

/