DNA repeats: origins, conservation, and role in human disease

Ajay Kumar Rana

Genome Instability & Disease ›› 2026, Vol. 7 ›› Issue (1) : 5

PDF
Genome Instability & Disease ›› 2026, Vol. 7 ›› Issue (1) :5 DOI: 10.1007/s42764-025-00174-8
Review Article
review-article

DNA repeats: origins, conservation, and role in human disease

Author information +
History +
PDF

Abstract

The genome, which is an organism’s complete genetic blueprint, consists of a dynamic mixture of unique and repetitive DNA sequences that are continuously evolving, making the human genome a prime example of this complexity. Repetitive sequences emerge through mechanisms such as replication slippage, transpositions, and unequal recombination, whereas non-repetitive sequences evolve through point mutations, insertions and deletions, segmental duplication errors, and horizontal gene transfers. This review explores the evolution of polymeric nucleic acids, genome proliferation and homeostasis, and the various mechanisms that drive genomic diversity. It further highlights the occurrence and biological significance of DNA repeats across different domains of life. In addition, the review critically evaluates the impact of these sequences on genome instability, regulatory processes, and their involvement in human diseases. The concluding sections integrate current evidence on the contribution of repetitive elements to evolution, focusing on the interplay between genetic and epigenetic mechanisms that govern their fate, and emphasize how this knowledge is crucial for advancing genome function research and personalized medicine.

Keywords

DNA repeats / Genome evolution / Replication slippage / Comparative genomics / Repeat expansion disorders

Cite this article

Download citation ▾
Ajay Kumar Rana. DNA repeats: origins, conservation, and role in human disease. Genome Instability & Disease, 2026, 7(1): 5 DOI:10.1007/s42764-025-00174-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aboitiz F. A brain for Speech. Evolutionary continuity in primate and human Auditory-Vocal processing. Front Neurosci, 2018, 12: 174

[2]

Ahmad, S. F., Singchat, W., Panthum, T., & Srikulnath, K. (2021). Impact of repetitive DNA elements on snake genome biology and evolution. Cells, 10(7). https://doi.org/10.3390/cells10071707

[3]

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002a). The diversity of genomes and the tree of life. Garland Science.

[4]

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002b). Molecular Biology of the Cell. 4th edition. New York: Garland Science.

[5]

Aldrup-MacDonald ME, Kuo ME, Sullivan LL, Chew K, Sullivan BA. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Research, 2016, 26(10): 1301-1311

[6]

Alvarez-Ponce D, McInerney JO. The Human genome retains relics of its prokaryotic ancestry: Human genes of archaebacterial and eubacterial origin exhibit remarkable differences. Genome Biology and Evolution, 2011, 3: 782-790

[7]

Atanesyan L, Gunther V, Dichtl B, Georgiev O, Schaffner W. Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals. Biological Chemistry, 2012, 393(1–263-70

[8]

Balamurugan K, Tracey ML, Heine U, Maha GC, Duncan GT. Mutation at the human D1S80 minisatellite locus. Thescientificworldjourna, 2012, 2012: 917235

[9]

Bates G, Lehrach H. Trinucleotide repeat expansions and human genetic disease. Bioessays, 1994, 16(4): 277-284

[10]

Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet, 2011, 12: 187-215

[11]

Bensasson D, Zhang D, Hartl DL, Hewitt GM. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends in Ecology & Evolution, 2001, 16(6314-321

[12]

Bidichandani, S. I., Delatycki, M. B., Napierala, M., & Duquette, A. (2024). Friedreich ataxia. GeneReviews® [Internet].

[13]

Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Purvis A. The delayed rise of present-day mammals. Nature, 2007, 446(7135): 507-512

[14]

Black BE, Cleveland DW. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell, 2011, 144(4): 471-479

[15]

Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. Bmc Genomics, 2013, 14: 399

[16]

Borun P, De Rosa M, Nedoszytko B, Walkowiak J, Plawski A. Specific Alu elements involved in a significant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Familial Cancer, 2015, 14(3): 455-461

[17]

Brugger K, Torarinsson E, Redder P, Chen L, Garrett RA. Shuffling of sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochemical Society Transactions, 2004, 32(Pt 2179-183

[18]

Bunting EL, Donaldson J, Cumming SA, Olive J, Broom E, Miclaus M, Tabrizi SJ. Antisense oligonucleotide-mediated MSH3 suppression reduces somatic CAG repeat expansion in huntington’s disease iPSC-derived striatal neurons. Science Translational Medicine, 2025, 17(785): eadn4600

[19]

Bzymek M, Lovett ST. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc Natl Acad Sci U S A, 2001, 98(158319-8325

[20]

Canceill D, Viguera E, Ehrlich SD. Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency. Journal of Biological Chemistry, 1999, 274(39): 27481-27490

[21]

Caputo V, Giovannotti M, Cerioni PN, Splendiani A, Tagliavini J, Olmo E. Chromosomal study of a lamprey (Lampetra Zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): Conventional and FISH analysis. Chromosome Research, 2011, 19(4): 481-491

[22]

Cardoso AR, Oliveira M, Amorim A, Azevedo L. Major influence of repetitive elements on disease-associated copy number variants (CNVs). Human Genomics, 2016, 10(1): 30

[23]

Caron, N. S., Wright, G. E., & Hayden, M. R. (2020). Huntington disease. GeneReviews® [Internet].

[24]

Carvalho CM, Zhang F, JR L. Genomic disorders: A window into human gene and genome evolution. Proc Natl Acad Sci U S A, 2010, 26(1071765-1771

[25]

Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nature Communications, 2022, 13(1): 3953

[26]

Cechova M, Vegesna R, Tomaszkiewicz M, Harris RS, Chen D, Rangavittal S, Makova KD. Dynamic evolution of great ape Y chromosomes. Proc Natl Acad Sci U S A, 2020, 117(4226273-26280

[27]

Chandra D, Mishra VC, Raina A, Raina V. Mutation rate evaluation at 21 autosomal STR loci: Paternity testing experience. Leg Med (Tokyo), 2022, 58: 102080

[28]

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, 2017, 58(5): 235-263

[29]

Chiarenza AA, Farnsworth A, Mannion PD, Lunt DJ, Valdes PJ, Morgan JV, Allison PA. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc Natl Acad Sci U S A, 2020, 117(2917084-17093

[30]

Chicote JU, Lopez-Sanchez M, Marques-Bonet T, Callizo J, Perez-Jurado LA, Garcia-Espana A. Circular DNA intermediates in the generation of large human segmental duplications. Bmc Genomics, 2020, 21(1): 593

[31]

Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(741457-74

[32]

Cook A, Giunti P. Friedreich’s ataxia: Clinical features, pathogenesis and management. British Medical Bulletin, 2017, 124(1): 19-30

[33]

Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics, 2009, 10(10): 691-703

[34]

Criscione SW, Zhang Y, Thompson W, Sedivy JM, Neretti N. Transcriptional landscape of repetitive elements in normal and cancer human cells. Bmc Genomics, 2014, 15: 583

[35]

Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. Fems Microbiology Reviews, 2017, 41(6): 923-940

[36]

Davis CL, Field D, Metzgar D, Saiz R, Morin PA, Smith IL, Wills C. Numerous length polymorphisms at short tandem repeats in human cytomegalovirus. Journal of Virology, 1999, 73(86265-6270

[37]

Denoeud F, Vergnaud G, Benson G. Predicting human minisatellite polymorphism. Genome Research, 2003, 13(5): 856-867

[38]

Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Seminars in Cell & Developmental Biology, 2024, 156: 130-140

[39]

Doss, R. M., Lopez-Ignacio, S., Dischler, A., Hiatt, L., Dashnow, H., Breuss, M. W., & Dias, C. M. (2025). Mosaicism in short tandem repeat disorders: A clinical perspective. Genes (Basel), 16(2). https://doi.org/10.3390/genes16020216

[40]

Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics, 2017, 12(7): 515-526

[41]

Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-Mediated genome editing increases lifespan and improves motor deficits in a huntington’s disease mouse model. Mol Ther Nucleic Acids, 2019, 17: 829-839

[42]

Erwin GS, Gursoy G, Al-Abri R, Suriyaprakash A, Dolzhenko E, Zhu K, Snyder MP. Recurrent repeat expansions in human cancer genomes. Nature, 2023, 613(7942): 96-102

[43]

Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics, 2007, 5(1): 7-14

[44]

Ferris JP. Montmorillonite-catalysed formation of RNA oligomers: The possible role of catalysis in The origins of life. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2006, 361(1474): 1777-1786 discussion 1786

[45]

Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci U S A, 1998, 95(17): 10020-10025

[46]

Franchi M, Gallori E. A surface-mediated origin of the RNA world: Biogenic activities of clay-adsorbed RNA molecules. Gene, 2005, 346: 205-214

[47]

Fuchs RP, Fujii S. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harbor Perspectives in Biology, 2013, 5(12): a012682

[48]

Garber KB, Visootsak J, Warren ST. Fragile X syndrome. European Journal of Human Genetics, 2008, 16(6666-672

[49]

Gehring AM, Walker JE, Santangelo TJ. Transcription regulation in archaea. Journal of Bacteriology, 2016, 198(14): 1906-1917

[50]

Gilbert C, Cordaux R. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr Opin Virol, 2017, 25: 16-22

[51]

Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Human Molecular Genetics, 2010, 19(R2): R176-187

[52]

Gold MA, Whalen JM, Freon K, Hong Z, Iraqui I, Lambert SAE, Freudenreich CH. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions. Plos Genetics, 2021, 17(10): e1009863

[53]

Goswami A. A dating success story: Genomes and fossils converge on placental mammal origins. Evodevo, 2012, 3(118

[54]

Grandi, N., & Tramontano, E. (2018). Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front Immunol, 9, 2039. https://doi.org/10.3389/fimmu.2018.02039

[55]

Gregory TR. Synergy between sequence and size in large-scale genomics. Nature Reviews Genetics, 2005, 6(9699-708

[56]

Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Lucas SM. The DNA sequence and biology of human chromosome 19. Nature, 2004, 428(6982): 529-535

[57]

Grzan T, Despot-Slade E, Mestrovic N, Plohl M, Mravinac B. CenH3 distribution reveals extended centromeres in the model beetle tribolium castaneum. Plos Genetics, 2020, 16(10): e1009115

[58]

Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Research, 2000, 10(162-71

[59]

Hallast P, Jobling MA. The Y chromosomes of the great apes. Human Genetics, 2017, 136(5): 511-528

[60]

Hancks DC, Kazazian HHJr. Active human retrotransposons: Variation and disease. Current Opinion in Genetics & Development, 2012, 22(3): 191-203

[61]

Harris RA, Raveendran M, Worley KC, Rogers J. Unusual sequence characteristics of human chromosome 19 are conserved across 11 nonhuman primates. Bmc Evolutionary Biology, 2020, 20(1): 33

[62]

Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. Embo Journal, 2003, 22(92274-2283

[63]

Hellen EH, Kern AD. The role of DNA insertions in phenotypic differentiation between humans and other primates. Genome Biology and Evolution, 2015, 7(4): 1168-1178

[64]

Henneman B, van Emmerik C, van Ingen H, Dame RT. Structure and function of archaeal histones. Plos Genetics, 2018, 14(9): e1007582

[65]

Hickman AB, Dyda F. DNA transposition at work. Chemical Reviews, 2016, 116(2012758-12784

[66]

Hirsch N, Birnbaum RY. Dual function of DNA sequences: Protein-Coding sequences function as transcriptional enhancers. Perspectives in Biology and Medicine, 2015, 58(2): 182-195

[67]

Holowka J, Zakrzewska-Czerwinska J. Nucleoid associated proteins: The small organizers that help to Cope with stress. Frontiers in Microbiology, 2020, 11: 590

[68]

Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, de Lima LG, O’Neill RJ. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science, 2022, 376(6588): eabk3112

[69]

Iacoangeli A, Al Khleifat A, Jones AR, Sproviero W, Shatunov A, Opie-Martin S, Al-Chalabi A. C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol Commun, 2019, 7(1115

[70]

Ibanez K, Jadhav B, Zanovello M, Gagliardi D, Clarkson C, Facchini S, Tucci A. Increased frequency of repeat expansion mutations across different populations. Nature Medicine, 2024, 30(113357-3368

[71]

Imakawa, K., Kusama, K., Kaneko-Ishino, T., Nakagawa, S., Kitao, K., Miyazawa, T., & Ishino, F. (2022). Endogenous retroviruses and placental Evolution, Development, and diversity. Cells, 11(15). https://doi.org/10.3390/cells11152458

[72]

Izzo, M., Battistini, J., Provenzano, C., Martelli, F., Cardinali, B., & Falcone, G. (2022). Molecular therapies for myotonic dystrophy type 1: From small drugs to gene editing. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094622

[73]

Jablonka, E., & Lamb, M. J. (2005). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life [Press release].

[74]

Jeffreys AJ, Neil DL, Neumann R. Repeat instability at human minisatellites arising from meiotic recombination. Embo Journal, 1998, 17(144147-4157

[75]

Jekely G. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harbor Perspectives in Biology, 2014, 6(9): a016030

[76]

Johnson PJ. Spliceosomal introns in a deep-branching eukaryote: The splice of life. Proc Natl Acad Sci U S A, 2002, 99(63359-3361

[77]

Jones KW, Corneo G. Location of satellite and homogeneous DNA sequences on human chromosomes. Nat New Biol, 1971, 233(43): 268-271

[78]

Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics, 2006, 22(5): 253-259

[79]

Kaur, S., Kumar, V., Singh, K., Behl, A., Arpna, Mishra, P. C., & Hora, R. (2025). Plasmodium Repetome: A mysterious space with a wealth of information. bioRxvi.

[80]

Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, Kumar A. Rationally designed small molecules targeting toxic CAG repeat RNA that causes huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie, 2019, 163: 21-32

[81]

Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A, 1997, 94(15): 7704-7711

[82]

Kim S, Cho CS, Han K, Lee J. Structural variation of Alu element and human disease. Genomics Inform, 2016, 14(3): 70-77

[83]

Kimble J, Nusslein-Volhard C. The great small organisms of developmental genetics: Caenorhabditis elegans and drosophila melanogaster. Development Biology, 2022, 485: 93-122

[84]

Klein SJ, O’Neill RJ. Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Research, 2018, 26(1–2): 5-23

[85]

Koonin EV. The origin of introns and their role in eukaryogenesis: A compromise solution to the introns-early versus introns-late debate?. Biology Direct, 2006, 1: 22

[86]

Koonin EV. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: Eukaryogenesis just made easier?. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2015, 370(1678): 20140333

[87]

Koonin EV, Novozhilov AS. Origin and evolution of the universal genetic code. Annual Review of Genetics, 2017, 51: 45-62

[88]

Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., & Tamura, K. (2024). MEGA12: Molecular evolutionary genetic analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41(12). https://doi.org/10.1093/molbev/msae263

[89]

Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE, Kim J, Lampson MA. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell, 2021, 184(194904-4918e4911

[90]

Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T, Kuroiwa H, Misumi O. Structure, function and evolution of the mitochondrial division apparatus. Biochimica Et Biophysica Acta, 2006, 1763(5–6): 510-521

[91]

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., & Baldwin, J. (2001). . International Human Genome Sequencing, C. Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. https://doi.org/10.1038/35057062

[92]

Langbehn DRRegistry Investigators of the European Huntington Disease. Longer CAG repeat length is associated with shorter survival after disease onset in huntington disease. American Journal of Human Genetics, 2022, 109(1): 172-179

[93]

Leeflang EP, Zhang L, Tavare S, Hubert R, Srinidhi J, MacDonald ME, et al.. Single sperm analysis of the trinucleotide repeats in the huntington’s disease gene: Quantification of the mutation frequency spectrum. Human Molecular Genetics, 1995, 4(9): 1519-1526

[94]

Levasseur A, Pontarotti P. The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biology Direct, 2011, 6: 11

[95]

Li HX, Tong DY, Lu HL, Ou XL, Chen WJ, Zhang YM, Sun HY. Mutation analysis of 24 autosomal STR loci using in paternity testing. Forensic Science International: Genetics Supplement Series, 2011, 3(1): e159-e160

[96]

Li, Z., Liu, X., Ning, N., Li, T., & Wang, H. (2024). Diversity, Distribution, and chromosomal rearrangements of TRIP1 repeat sequences in Escherichia coli. Genes (Basel), 15(2). https://doi.org/10.3390/genes15020236

[97]

Liao X, Zhu W, Zhou J, Li H, Xu X, Zhang B, Gao X. Repetitive DNA sequence detection and its role in the human genome. Commun Biol, 2023, 6(1954

[98]

Lindermayr C, Rudolf EE, Durner J, Groth M. Interactions between metabolism and chromatin in plant models. Mol Metab, 2020, 38: 100951

[99]

Liu Q, Pan Y, Li XJ, Li S. Molecular mechanisms and therapeutics for SCA17. Neurotherapeutics, 2019, 16(41097-1105

[100]

Liu X, Hong T, Parameswaran S, Ernst K, Marazzi I, Weirauch MT, Fuxman Bass JI. Human virus transcriptional regulators. Cell, 2020, 182(124-37

[101]

Lopez Correa C, Brems H, Lazaro C, Marynen P, Legius E. Unequal meiotic crossover: A frequent cause of NF1 microdeletions. American Journal of Human Genetics, 2000, 66(6): 1969-1974

[102]

Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. Rna Biology, 2024, 21(1): 11-27

[103]

Mann RS, Glassford WJ. Hox genes: The original body builders. Seminars in Cell & Developmental Biology, 2024, 152–153: 1-3

[104]

Maslowska KH, Makiela-Dzbenska K, Mo JY, Fijalkowska IJ, Schaaper RM. High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation. Proc Natl Acad Sci U S A, 2018, 115(16): 4212-4217

[105]

McCarty DR, Chory J. Conservation and innovation in plant signaling pathways. Cell, 2000, 103(2): 201-209

[106]

McEachin ZT, Parameswaran J, Raj N, Bassell GJ, Jiang J. RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiology of Diseases, 2020, 145: 105055

[107]

McNulty SM, Sullivan BA. Alpha satellite DNA biology: Finding function in the recesses of the genome. Chromosome Research, 2018, 26(3): 115-138

[108]

Mehan MR, Freimer NB, Ophoff RA. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Human Genomics, 2004, 1(5335-344

[109]

Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57(4): 412-442

[110]

Mihok E, Polgari D, Lenyko-Thegze A, Makai D, Fabian A, Ali M, Sagi L. Plasticity of parental CENH3 incorporation into the centromeres in wheat x barley F1 hybrids. Frontiers in Plant Science, 2024, 15: 1324817

[111]

Mizielinska S, Hautbergue GM, Gendron TF, van Blitterswijk M, Hardiman O, Ravits J, Rademakers R. Amyotrophic lateral sclerosis caused by hexanucleotide repeat expansions in C9orf72: From genetics to therapeutics. Lancet Neurology, 2025, 24(3): 261-274

[112]

Modi V, Sankararamakrishnan R. Antiapoptotic Bcl-2 homolog CED-9 in caenorhabditis elegans: Dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Proteins, 2014, 82(61035-1047

[113]

Morales ME, White TB, Streva VA, DeFreece CB, Hedges DJ, Deininger PL. The contribution of Alu elements to mutagenic DNA double-strand break repair. Plos Genetics, 2015, 11(3): e1005016

[114]

Moxon ER, Wills C. DNA microsatellites: Agents of evolution?. Scientific American, 1999, 280(194-99

[115]

Munoz-Lopez M, Garcia-Perez JL. DNA transposons: Nature and applications in genomics. Curr Genomics, 2010, 11(2): 115-128

[116]

Nadir E, Margalit H, Gallily T, Ben-Sasson SA. Microsatellite spreading in the human genome: Evolutionary mechanisms and structural implications. Proc Natl Acad Sci U S A, 1996, 93(13): 6470-6475

[117]

Nojadeh JN, Sharif B, Sakhinia E. Microsatellite instability in colorectal cancer. Excli Journal, 2018, 17: 159-168

[118]

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Phillippy AM. The complete sequence of a human genome. Science, 2022, 376(6588): 44-53

[119]

Olmos V, Gogia N, Luttik K, Haidery F, Lim J. The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): Looking beyond the cerebellum. Cellular and Molecular Life Sciences, 2022, 79(8): 404

[120]

Ortiz-Barrientos D, Engelstadter J, Rieseberg LH. Recombination rate evolution and the origin of species. Trends in Ecology & Evolution, 2016, 31(3226-236

[121]

Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin, 2021, 14(1): 25

[122]

Peng X, Brugger K, Shen B, Chen L, She Q, Garrett RA. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in sulfolobus genomes. Journal of Bacteriology, 2003, 185(82410-2417

[123]

Pickrell J. How the earliest mammals thrived alongside dinosaurs. Nature, 2019, 574(7779): 468-472

[124]

Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: New tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24(10): 687-711

[125]

Polymeropoulos MH, Rath DS, Xiao H, Merril CR. Tetranucleotide repeat polymorphism at the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2). Nucleic Acids Research, 1992, 20(6): 1432

[126]

Poole A, Penny D, Sjoberg B. Methyl-RNA: An evolutionary Bridge between RNA And DNA?. Chemistry & Biology, 2000, 7(12R207-216

[127]

Poszewiecka B, Gogolewski K, Stankiewicz P, Gambin A. Revised time Estimation of the ancestral human chromosome 2 fusion. Bmc Genomics, 2022, 23(Suppl 6): 616

[128]

Pumpernik D, Oblak B, Borstnik B. Replication slippage versus point mutation rates in short tandem repeats of the human genome. Molecular Genetics and Genomics, 2008, 279(153-61

[129]

Rana, A. K. (2025). EXPRESS: Challenging biological samples and strategies for DNA extraction. Journal of Investigative Medicine, 10815589251327503. https://doi.org/10.1177/10815589251327503

[130]

Rana AK, Ankri S. Reviving the RNA world: An insight into the appearance of RNA methyltransferases. Frontiers in Genetics, 2016, 7: 99

[131]

Rolf B, Schurenkamp M, Junge A, Brinkmann B. Sequence polymorphism at the tetranucleotide repeat of the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2) locus. International Journal of Legal Medicine, 1997, 110(2): 69-72

[132]

Rosin L, Mellone BG. Co-evolving CENP-A and CAL1 domains mediate centromeric CENP-A deposition across drosophila species. Developmental Cell, 2016, 37(2136-147

[133]

Sahel DK, Vora LK, Saraswat A, Sharma S, Monpara J, D’Souza AA, Thakur RRS. CRISPR/Cas9 genome editing for Tissue-Specific in vivo targeting: Nanomaterials and translational perspective. Adv Sci (Weinh), 2023, 10(25): e2305072

[134]

Said, I., Barbash, D. A., & Clark, A. G. (2024). The structure of simple satellite variation in the human genome and its correlation with centromere ancestry. Genome Biology and Evolution, 16(8). https://doi.org/10.1093/gbe/evae153

[135]

Saksouk N, Simboeck E, Dejardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin, 2015, 8: 3

[136]

Sale JE. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harbor Perspectives in Biology, 2013, 5(3a012708

[137]

Sasaki M, Lange J, S K. Genome destabilization by homologous recombination in the germline. Nature Reviews Molecular Cell Biology, 2010, 11(3182-195

[138]

Schaap M, Lemmers RJ, Maassen R, van der Vliet PJ, Hoogerheide LF, van Dijk HK, van der Maarel SM. Genome-wide analysis of macrosatellite repeat copy number variation in worldwide populations: Evidence for differences and commonalities in size distributions and size restrictions. Bmc Genomics, 2013, 14: 143

[139]

Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent advances in archaeal translation initiation. Frontiers in Microbiology, 2020, 11: 584152

[140]

Sewelam N, Kazan K, Schenk PM. Global plant stress signaling: Reactive oxygen species at the Cross-Road. Frontiers in Plant Science, 2016, 7: 187

[141]

Shapiro, J. A. (2021). How chaotic is genome chaos? Cancers (Basel), 13(6). https://doi.org/10.3390/cancers13061358

[142]

Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Eichler EE. Segmental duplications and copy-number variation in the human genome. American Journal of Human Genetics, 2005, 77(178-88

[143]

Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Swergold GD. Reading between the lines: Human genomic variation induced by LINE-1 Retrotransposition. Genome Research, 2000, 10(101496-1508

[144]

Shi, Y., Niu, Y., Zhang, P., Luo, H., Liu, S., Zhang, S., & He, S. (2023). Characterization of genome-wide STR variation in 6487 human genomes. Nat Commun, 14(1), 2092. https://doi.org/10.1038/s41467-023-37690-8

[145]

Sibbald SJ, Eme L, Archibald JM, Roger AJ. Lateral gene transfer mechanisms and Pan-genomes in eukaryotes. Trends in Parasitology, 2020, 36(11): 927-941

[146]

Silva Rabelo-Araujo JVD, Francisconi AF, da Costa ZP, Garcia CB, de Castro Ribeiro OB, Anastacio A, Zucchi MI. Genomic characterization of repetitive DNA and transposable elements in Dyckia (Pitcairnioideae) species. Bmc Research Notes, 2025, 18(1): 284

[147]

Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes?. Trends in Neurosciences, 2010, 33(8345-354

[148]

Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science, 1976, 191(4227): 528-535

[149]

Srivastava S, Avvaru AK, Sowpati DT, Mishra RK. Patterns of microsatellite distribution across eukaryotic genomes. Bmc Genomics, 2019, 20(1): 153

[150]

Stairs S, Nikmal A, Bucar DK, Zheng SL, Szostak JW, Powner MW. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nature Communications, 2017, 8: 15270

[151]

Strathmann EA, Holker I, Tschernoster N, Hosseinibarkooie S, Come J, Martinat C, Wirth B. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4. American Journal of Human Genetics, 2023, 110(3442-459

[152]

Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Developmental Neurobiology, 2018, 78(5434-455

[153]

Subramanian S, Mishra RK, Singh L. Genome-wide analysis of microsatellite repeats in humans: Their abundance and density in specific genomic regions. Genome Biology, 2003, 4(2): R13

[154]

Sun JH, Zhou L, Emerson DJ, Phyo SA, Titus KR, Gong W, Phillips-Cremins JE. Disease-Associated short tandem repeats Co-localize with chromatin domain boundaries. Cell, 2018, 175(1224-238e215

[155]

Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C, Cooper VS, Lynch M. Evolution of the Insertion-Deletion mutation rate across the tree of life. G3 (Bethesda), 2016, 6(8): 2583-2591

[156]

Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. Bmc Genomics, 2020, 21(Suppl 7): 535

[157]

Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, Davison AJ. Evolution and diversity in human herpes simplex virus genomes. Journal of Virology, 2014, 88(21209-1227

[158]

Tan JC, Tan A, Checkley L, Honsa CM, Ferdig MT. Variable numbers of tandem repeats in plasmodium falciparum genes. Journal of Molecular Evolution, 2010, 71(4): 268-278

[159]

Tanudisastro HA, Deveson IW, Dashnow H, MacArthur DG. Sequencing and characterizing short tandem repeats in the human genome. Nature Reviews Genetics, 2024, 25(7): 460-475

[160]

Thakur, J., Packiaraj, J., & Henikoff, S. (2021). Sequence, chromatin and evolution of satellite DNA. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094309

[161]

Tkachenko, A. V., & Maslov, S. (2024). Emergence of catalytic function in prebiotic information-coding polymers. Elife, 12. https://doi.org/10.7554/eLife.91397

[162]

van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiology and Molecular Biology Reviews, 1998, 62(2): 275-293

[163]

Vernie T, Rich M, Pellen T, Teyssier E, Garrigues V, Chauderon L, Delaux PM. Conservation of symbiotic signaling since the most recent common ancestor of land plants. Proc Natl Acad Sci U S A, 2025, 122(1): e2408539121

[164]

Viguera E, Canceill D, Ehrlich SD. In vitro replication slippage by DNA polymerases from thermophilic organisms. Journal of Molecular Biology, 2001, 312(2323-333

[165]

Viguera E, Canceill D, Ehrlich SD. Replication slippage involves DNA polymerase pausing and dissociation. Embo Journal, 2001, 20(10): 2587-2595

[166]

Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS. A de Novo Alu insertion results in neurofibromatosis type 1. Nature, 1991, 353(6347): 864-866

[167]

Wallau GL, Ortiz MF, Loreto EL. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biology and Evolution, 2012, 4(8): 689-699

[168]

Warne D, Watkins C, Bodfish P, Nyberg K, Spurr NK. Tetranucleotide repeat polymorphism at the human beta-actin related pseudogene 2 (ACTBP2) detected using the polymerase chain reaction. Nucleic Acids Research, 1991, 19(24): 6980

[169]

Waye JS, Willard HF. Human beta satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci U S A, 1989, 86(166250-6254

[170]

Wei W, Schon KR, Elgar G, Orioli A, Tanguy M, Giess A, Chinnery PF. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature, 2022, 611(7934): 105-114

[171]

Williams B, Dickman M. Plant programmed cell death: Can’t live with it; Can’t live without it. Molecular Plant Pathology, 2008, 9(4): 531-544

[172]

Wyner N, Barash M, McNevin D. Forensic autosomal short tandem repeats and their potential association with phenotype. Frontiers in Genetics, 2020, 11: 884

[173]

Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research, 2023, 51(W1): W587-W592

[174]

Yameogo P, Aguilar S, Prakash TP, Rigo F, Lynch DR, Napierala JS, Napierala M. Antisense oligonucleotide therapy for patients with friedreich’s ataxia carrying the c.165 + 5G > C splicing mutation. Mol Ther Nucleic Acids, 2025, 36(3102617

[175]

Youssef N, Budd A, Bielawski JP. Introduction to genome biology and diversity. Methods in Molecular Biology, 2019, 1910: 3-31

[176]

Yushchenko T, Deuerling E, Hauser K. Insights into the aggregation mechanism of PolyQ proteins with different glutamine repeat lengths. Biophys J, 2018, 114(81847-1857

[177]

Zattera, M. L., & Bruschi, D. P. (2022). Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells, 11(21). https://doi.org/10.3390/cells11213373

[178]

Zhang X, Zhang R, Yu J. New Understanding of the relevant role of LINE-1 Retrotransposition in human disease and immune modulation. Front Cell Dev Biol, 2020, 8: 657

[179]

Zhao X, Wu X, Qin L, Tan Z, Li S, Ouyang Q, Tian Y. The genome of herpes simplex virus type 1 is prone to form short repeat sequences. Journal of Biosciences and Medicines, 2013, 1(3): 26-30

[180]

Zhao S, Chen L, Zang Y, Liu W, Liu S, Teng F, Wang Y. Endometrial cancer in Lynch syndrome. International Journal of Cancer, 2022, 150(17-17

[181]

Zhao M, Shu G, Hu Y, Cao G, Wang Y. Pattern and variation in simple sequence repeat (SSR) at different genomic regions and its implications to maize evolution and breeding. Bmc Genomics, 2023, 24(1): 136

[182]

Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Zhang G. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol, 2023, 7(71114-1130

RIGHTS & PERMISSIONS

Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

/