BASP1 is a potential relapse-associated diagnostic marker for adult patients with B-cell acute lymphoblastic leukemia

Haiyu Song , Ruiqi Wang , Weijie Liao , Li Yu

Genome Instability & Disease ›› 2025, Vol. 6 ›› Issue (2) : 88 -97.

PDF
Genome Instability & Disease ›› 2025, Vol. 6 ›› Issue (2) : 88 -97. DOI: 10.1007/s42764-025-00151-1
Original Research Paper

BASP1 is a potential relapse-associated diagnostic marker for adult patients with B-cell acute lymphoblastic leukemia

Author information +
History +
PDF

Abstract

Epigenetic signatures, particularly DNA methylation, have emerged as potential biomarkers in various cancers, including adult B-ALL. In particular, DNA methylation increases with age and significantly affects overall survival. As a result, it holds promise as a diagnostic tool for B-ALL, providing insights into disease progression and prognosis. By integrating epigenetic and transcriptomic analyses, we identified potential biomarkers associated with B-ALL. Notably, our findings suggest that the methylation status of brain abundant membrane attached signal protein 1 (BASP1) is linked to relapse in B-ALL and may serve as a valuable diagnostic marker.

Keywords

Adult B-cell acute lymphoblastic leukemia / Epigenetic signature / BASP1 / DNA hypermethylation / Biological Sciences / Genetics

Cite this article

Download citation ▾
Haiyu Song, Ruiqi Wang, Weijie Liao, Li Yu. BASP1 is a potential relapse-associated diagnostic marker for adult patients with B-cell acute lymphoblastic leukemia. Genome Instability & Disease, 2025, 6(2): 88-97 DOI:10.1007/s42764-025-00151-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnastasiadiD, Esteve-CodinaA, PiferrerF. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin, 2018, 11137.

[2]

BelaliT, WodiC, ClarkB, CheungMK, CraigTJ, WhewayG, WagnerN, WagnerKD, RobertsS, PorazinskiS, LadomeryM. WT1 activates transcription of the splice factor kinase SRPK1 gene in PC3 and K562 cancer cells in the absence of corepressor BASP1. Biochim Biophys Acta Gene Regul Mech, 2020, 186312194642.

[3]

BuchnerM, MüschenM. Targeting the B-cell receptor signaling pathway in B lymphoid malignancies. Current Opinion in Hematology, 2014, 214341-349.

[4]

CreaseyT, BarrettaE, RyanSL, ButlerE, KirkwoodAA, LeongamornlertD, PapaemmanuilE, PatrickP, Clifton-HadleyL, PatelB, MenneT, McMillanAK, HarrisonCJ, RowntreeCJ, MorleyN, MarksDI, FieldingAK, MoormanAV. Genetic and genomic Analysis of acute lymphoblastic leukemia in. older adults reveals a distinct profile of abnormalities: Analysis of 210 patients from the UKALL14 and UKALL60 + clinical trials. Haematologica, 2022, 10792051-2063.

[5]

DengM, ZuoWL, ZhangCL, WeiXD, LiXY. Clinical analysis of gene mutation in adult patients with B-ALL and its influence on clinical prognosis. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2020, 2861867-1872.

[6]

DiNardoCD, PratzKW, LetaiA, JonasBA, WeiAH, ThirmanM, ArellanoM, FrattiniMG, KantarjianH, PopovicR, ChylaB, XuT, DunbarM, AgarwalSK, HumerickhouseR, MabryM, PotluriJ, KonoplevaM, PollyeaDA. Safety and preliminary efficacy of venetoclax with decitabine or Azacytidine in elderly patients with preciously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. The Lancet Oncology, 2014, 192216-228.

[7]

Garcia-PrietoCA, VillanuevaL, Bueno-CostaA, DavalosV, González-NavarroEA, JuanM, Urbano-IspizuaÁ, DelgadoJ, Ortiz-MaldonadoV, Del BufaloF, LocatelliF, QuintarelliC, SinibaldiM, SolerM, Castro de MouraM, FerrerG, UrdinguioRG, FernandezAF, FragaMF, et al. . Epigenetic profiling and response to CD19 chimeric antigen receptor T-cell therapy in B-cell malignancies. Journal of the National Cancer Institute, 2022, 1143436-445.

[8]

GengH, BrennanS, MilneTA, ChenWY, LiY, HurtzC, KweonSM, ZicklL, ShojaeeS, NeubergD, HuangC, BiswasD, XinY, RacevskisJ, KetterlingRP, LugerSM, LazarusH, TallmanMS, RoweJM. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discovery, 2012, 2111004-1023.

[9]

GongX, FangQ, GuR, QiuS, LiuK, LinD, ZhouC, ZhangG, GongB, LiuY, LiY, LiuB, WangY, WeiH, MiY, WangJ. A pediatric-inspired regimen for adolescent and adult patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A prospective study from China. Haematologica, 2024, 109103146-3156.

[10]

GoodZ, SarnoJ, JagerA, SamusikN, AghaeepourN, SimondsEF, WhiteL, LacayoNJ, FantlWJ, FazioG, GaipaG, BiondiA, TibshiraniR, BendallSC, NolanGP, DavisKL. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nature Medicine, 2018, 244474-483.

[11]

GoodfellowSJ, RebelloMR, ToskaE, ZeefLA, RuddSG, MedlerKF, RobertsSG. WT1 and its transcriptional cofactor BASp1 redirect the differentiation pathway of an established blood cell line. The Biochemical Journal, 2011, 4351113-125.

[12]

HaoZ, FeiY, ChenJ, HuangS, WangL, YuY, BianM, SiY, ZhangX, YangX, ZhangB, WanY, ZhangY, LinG. Combination of venetoclax and Azacytidine in relapsed/refractory. Acute B-cell lymphoblastic leukemia: A case series from A single center. Hematology, 2024, 2912344998.

[13]

Ilaria IacobucciMT, Witkowski, CharlesG, Mullighan. Single-cell analysis of acute lymphoblastic and lineage-ambiguous. Leukemia: Approaches and molecular insights. Blood, 2023, 1414356-368.

[14]

JabbourE, ShortNJ, JainN, HaddadFG, WelchMA, RavandiF, KantarjianH. The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades. Journal of Hematology & Oncology, 2023, 16122.

[15]

MaY, DaiH, CuiQ, LiuS, KangL, LianX, CuiW, YinJ, LiuL, CaiM, YuL, WuD, TangX. Decitabine in combination with fludarabine and cyclophosphamide as a lymphodepletion regimen followed by CD19/CD22 bispecific targeted CAR T-cell therapy significantly improves survival in relapsed/refractory B-ALL patients. Exp Hematol Oncol, 2023, 12136.

[16]

MartinV, AgirreX, Jiménez-VelascoA, José-EnerizES, CordeuL, GárateL, Vilas-ZornozaA, CastillejoJA, HeinigerA, PrósperF, TorresA, Roman-GomezJ. Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia. Cancer Science, 2008, 9991865-1868.

[17]

MaunakeaAK, NagarajanRP, BilenkyM, BallingerTJ, D’SouzaC, FouseSD, JohnsonBE, HongC, NielsenC, ZhaoY, TureckiG, DelaneyA, VarholR, ThiessenN, ShchorsK, HeineVM, RowitchDH, XingX, FioreC, et al. . Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 4667303253-257.

[18]

Roman-GomezJ, Jimenez-VelascoA, AgirreX, CastillejoJA, NavarroG, GarateL, Jose-EnerizES, CordeuL, BarriosM, ProsperF, HeinigerA, TorresA. Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia, 2006, 2081445-1448.

[19]

SeelanRS, MukhopadhyayP, PisanoMM, GreeneRM. Effects of 5-Aza-2’-deoxycytidine (decitabine) on gene expression. Drug Metabolism Reviews, 2018, 502193-207.

[20]

StanullaM, DagdanE, ZaliovaM, MörickeA, PalmiC, CazzanigaG, EckertC, Te KronnieG, BourquinJP, BornhauserB, KoehlerR, BartramCR, LudwigWD, BleckmannK, Groeneveld-KrentzS, ScheweD, JunkSV, HinzeL, KleinN, et al. . IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. Journal of Clinical Oncology, 2018, 36121240-1249.

[21]

TangB, CaiZ, WangZ, LinD, HeX, LiQ, LiangX, HuangK, ZhouX, LinR, XuN, FanZ, HuangF, SunJ, LiuX, LiuQ, ZhouH. Allogeneic hematopoietic stem cell transplantation overcome the. Poor prognosis of patients with IKZFplus CD20-a very high-risk subtype in B-cell acute lymphoblastic leukemia. Bone Marrow Transplantation, 2022, 57121751-1757.

[22]

van OutersterpI, BoerJM, van de VenC, ReichertCEJ, BoereeA, KruisingaB, de Groot-KrusemanHA, EscherichG, Sijs-SzaboA, RijneveldAW, den BoerML. Tyrosine Kinase inhibitor resistance in de Novo BCR::ABL1-positive BCP-ALL beyond. Kinase domain mutations. Blood Adv, 2024, 881835-1845.

[23]

ZarubinaKI, ParovichnikovaEN, SurinVL, PshenichnikovaOS, GavrilinaOA, IsinovaGA, TroitskaiaVV, SokkolovAN, Gal’tsevaIV, KapranovNM, DavydovaIO, ObukhovaTN, SudarikovAB, SavchenkoVG. Detection of activating mutations in RAS/RAF/MEK/ERK and JAK/STAT signaling pathways. Terapevticheskii Arkhiv, 2020, 92731-42.

Funding

National Natural Science Foundation of China(82030076)

Shenzhen Clinical Research Center of Hematology(LCYSSQ20220823091401002)

Sanming Project of Medicine in Shenzhen(SZSM202111004)

Shenzhen Key Laboratory Foundation(ZDSYS20200811143757022)

Medicine Plus Program of Shenzhen University(000003011601)

RIGHTS & PERMISSIONS

Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/