Autocrine p40 enhances the efficacy of CLDN18.2 CAR-T cells in gastrointestinal cancer

Wei Zhang , Miao Zeng , Xingyu Ma , Jinghong Chen , Yisheng Li , Li Yu

Genome Instability & Disease ›› 2025, Vol. 6 ›› Issue (2) : 63 -79.

PDF
Genome Instability & Disease ›› 2025, Vol. 6 ›› Issue (2) : 63 -79. DOI: 10.1007/s42764-025-00149-9
Original Research Paper

Autocrine p40 enhances the efficacy of CLDN18.2 CAR-T cells in gastrointestinal cancer

Author information +
History +
PDF

Abstract

Gastrointestinal cancers (GICs), including gastric cancer (GC) and pancreatic cancer (PC), have high mortality rates and limited therapeutic options. The treatment of these two cancers still faces many challenges, especially due to their high genetic heterogeneity and genomic instability. Claudin 18.2 (CLDN18.2) is highly restricted in normal tissues but is frequently upregulated in gastrointestinal cancers, making it an attractive target for chimeric antigen receptor-T (CAR-T) cell therapy against GICs, with encouraging results in phase I trials. However, enhancing CAR-T cell efficacy requires overcoming several challenges, including T cells expansion, persistence, exhaustion, and the suppressive tumor microenvironment (TME). We developed a novel CAR-T construct combining a CLDN18.2-specific CAR with the human p40 subunit (CLDN18.2-p40 CAR) to improve antitumor efficacy. Our finding demonstrated that CLDN18.2-p40 CAR-T cells exhibited greater persistence, reduced differentiation, enhanced cytotoxicity, and improved long-term survival in vitro compared with conventional CAR-T cells. In vivo, treatment with CLDN18.2-p40 CAR-T cells led to enhanced tumor cell lysis, sustained cytotoxicity, and increased tumor infiltration, resulting in significant tumor regression in both xenograft and syngeneic mice models. RNA-sequencing revealed an enrichment of pro-inflammatory pathways related to leukocyte migration and chemotaxis in the tumor tissue, aligning with the observed increase in T cell infiltration. This study underscored the pivotal role of the p40 subunit in enhancing the phenotype, persistence, and migration of CAR-T cells, and ameliorating the TME, identifying CLDN18.2-p40 CAR-T as a potentially more effective therapy for improving the clinical outcomes of patients with GIC.

Keywords

Gastrointestinal cancer / Genomic instability / CAR-T cell therapy / Claudin 18.2 / p40 / Tumor microenvironment / Medical and Health Sciences / Immunology / Oncology and Carcinogenesis

Cite this article

Download citation ▾
Wei Zhang, Miao Zeng, Xingyu Ma, Jinghong Chen, Yisheng Li, Li Yu. Autocrine p40 enhances the efficacy of CLDN18.2 CAR-T cells in gastrointestinal cancer. Genome Instability & Disease, 2025, 6(2): 63-79 DOI:10.1007/s42764-025-00149-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AhnT, BaeEA, SeoH. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Molecular Therapy, 2024, 3261617-1627.

[2]

AlbeldaSM. CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nature Reviews. Clinical Oncology, 2024, 21147-66.

[3]

AllenGM, FrankelNW, ReddyNR, BhargavaHK, YoshidaMA, StarkSR, PurlM, LeeJ, YeeJL, YuW, LiAW, GarciaKC, El-SamadH, RoybalKT, SpitzerMH, LimWA. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science, 2022, 3786625eaba1624.

[4]

BinnewiesM, RobertsEW, KerstenK, ChanV, FearonDF, MeradM, CoussensLM, GabrilovichDI, Ostrand-RosenbergS, HedrickCC, VonderheideRH, PittetMJ, JainRK, ZouW, HowcroftTK, WoodhouseEC, WeinbergRA, KrummelMF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 245541-550.

[5]

ChanJD, LaiJ, SlaneyCY, KalliesA, BeavisPA, DarcyPK. Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 2112769-784.

[6]

DagarG, GuptaA, MasoodiT, NisarS, MerhiM, HashemS, ChauhanR, DagarM, MirzaS, BaggaP, KumarR, AkilASA, MachaMA, HarisM, UddinS, SinghM, BhatAA. Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med, 2023, 211449.

[7]

DuncanBB, DunbarCE, IshiiK. Applying a clinical lens to animal models of CAR-T cell therapies. Mol Ther Methods Clin Dev, 2022, 27: 17-31.

[8]

EllisGI, SheppardNC, RileyJL. Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 227427-447.

[9]

Ghahri-SaremiN, AkbariB, SoltantoyehT, HadjatiJ, GhassemiS, MirzaeiHR. Genetic modification of cytokine signaling to enhance efficacy of CAR T cell therapy in solid tumors. Frontiers in Immunology, 2021, 12: 738456.

[10]

GreenmanR, PizemY, Haus-CohenM, GoorA, HorevG, DenkbergG, SinikK, ElbazY, BronnerV, LevinAG, HornG, Shen-OrrS, ReiterY. Shaping functional avidity of CAR T cells: Affinity, avidity, and antigen density that regulate response. Molecular Cancer Therapeutics, 2021, 205872-884.

[11]

Hana, C., Thaw Dar, N. N., Venegas, G., M., & Vulfovich, M. (2024). Claudins in cancer: A current and future therapeutic target. International Journal of Molecular Sciences, 25(9). https://doi.org/10.3390/ijms25094634

[12]

HeitzenederS, BosseKR, ZhuZ, ZhelevD, MajznerRG, RadosevichMT, DhingraS, SotilloE, BuongervinoS, Pascual-PastoG, GarriganE, XuP, HuangJ, SalzerB, DelaidelliA, RamanS, CuiH, MartinezB, BornheimerSJ, SahafB, AlagA, FetahuIS, HasselblattM, ParkerKR, AnbunathanH, HwangJ, HuangM, SakamotoK, LacayoNJ, KlyszDD, TheruvathJ, Vilches-MoureJG, SatpathyAT, ChangHY, LehnerM, Taschner-MandlS, JulienJP, SorensenPH, DimitrovDS, MarisJM, MackallCL. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40153-69e59.

[13]

HopkinsJL, LanL, ZouL. DNA repair defects in cancer and therapeutic opportunities. Genes & Development, 2022, 365–6278-293.

[14]

HuangY, WangH. From suppressor to enhancer: IL-10’s alternative role in CAR-T cell therapies against solid tumors. Cell Stem Cell, 2024, 313285-287.

[15]

JiaK, ChenY, SunY, HuY, JiaoL, MaJ, YuanJ, QiC, LiY, GongJ, GaoJ, ZhangX, LiJ, ZhangC, ShenL. Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. Bmc Medicine, 2022, 201223.

[16]

JiangH, ShiZ, WangP, WangC, YangL, DuG, ZhangH, ShiB, JiaJ, LiQ, WangH, LiZ. Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric Cancer. Journal of the National Cancer Institute, 2019, 1114409-418.

[17]

KangS, WangL, XuL, WangR, KangQ, GaoX, YuL. Decitabine enhances targeting of AML cells by NY-ESO-1-specific TCR-T cells and promotes the maintenance of effector function and the memory phenotype. Oncogene, 2022, 41424696-4708.

[18]

KimS, ParkCI, LeeS, ChoiHR, KimCH. Reprogramming of IL-12 secretion in the PDCD1 locus improves the anti-tumor activity of NY-ESO-1 TCR-T cells. Frontiers in Immunology, 2023, 14: 1062365.

[19]

KleinAP. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nature Reviews. Gastroenterology & Hepatology, 2021, 187493-502.

[20]

KruegerJG, EyerichK, KuchrooVK, RitchlinCT, AbreuMT, EllosoMM, FourieA, FakharzadehS, SherlockJP, YangYW, CuaDJ, McInnesIB. IL-23 past, present, and future: A roadmap to advancing IL-23 science and therapy. Frontiers in Immunology, 2024, 15: 1331217.

[21]

LiP, YuX. Harnessing DOT1L and RAP80: Unveiling new insights into BRCA1-mediated DNA repair for cancer therapy. Genome Instability & Disease, 2024, 55251-253.

[22]

LiuJ, JiS, LiangC, QinY, JinK, LiangD, XuW, ShiS, ZhangB, LiuL, LiuC, XuJ, NiQ, YuX. Critical role of oncogenic KRAS in pancreatic cancer (Review). Molecular Medicine Reports, 2016, 1364943-4949.

[23]

LiuY, DiS, ShiB, ZhangH, WangY, WuX, LuoH, WangH, LiZ, JiangH. Armored inducible expression of IL-12 enhances antitumor activity of Glypican-3-Targeted chimeric antigen Receptor-Engineered T cells in hepatocellular carcinoma. The Journal of Immunology, 2019, 2031198-207.

[24]

LiuY, SunY, WangP, LiS, DongY, ZhouM, ShiB, JiangH, SunR, LiZ. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med, 2023, 211255.

[25]

Lukaszewicz-Zajac, M., & Mroczko, B. (2023). Claudins-Promising biomarkers for selected Gastrointestinal (GI) malignancies?? Cancers (Basel), 16(1). https://doi.org/10.3390/cancers16010152

[26]

LuoH, SuJ, SunR, SunY, WangY, DongY, ShiB, JiangH, LiZ. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clinical Cancer Research, 2020, 26205494-5505.

[27]

MaX, ShouP, SmithC, ChenY, DuH, SunC, Porterfield KrenN, MichaudD, AhnS, VincentB, SavoldoB, Pylayeva-GuptaY, ZhangS, DottiG, XuY. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nature Biotechnology, 2020, 384448-459.

[28]

Marin, J. J. G., Perez-Silva, L., Macias, R. I. R., Asensio, M., Peleteiro-Vigil, A., Sanchez-Martin, A., Cives-Losada, C., Sanchon-Sanchez, P., De Blas, S., Herraez, B., Briz, E., O., & Lozano, E. (2020). Molecular bases of mechanisms accounting for drug resistance in gastric adenocarcinoma. Cancers (Basel), 12(8). https://doi.org/10.3390/cancers12082116

[29]

MarkleyJC, SadelainM. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood, 2010, 115173508-3519.

[30]

MarofiF, MotavalliR, SafonovVA, ThangaveluL, YumashevAV, AlexanderM, ShomaliN, ChartrandMS, PathakY, JarahianM, IzadiS, HassanzadehA, ShirafkanN, TahmasebiS, KhiaviFM. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Research & Therapy, 2021, 12181.

[31]

MartinezM, MoonEK. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 2019, 10: 128.

[32]

MorottiM, GrimmAJ, HopeHC, ArnaudM, DesbuissonM, RayrouxN, BarrasD, MasidM, MurguesB, ChapBS, OngaroM, RotaIA, RonetC, MinasyanA, ChiffelleJ, LacherSB, BobisseS, MurguesC, GhisoniE, OuchenK, MjahedB, BenedettiR, AbdellaouiF, TurriniN, GannonR, ZamanPO, MathevetK, LelievreP, CrespoL, ConradI, VerdeilM, KandalaftG, DagherLE, Corria-OsorioJ, DouceyJ, HoMA, HarariPC, VanniniA, BöttcherN, LanitiJPD, CoukosG. PGE(2) inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature, 2024, 6298011426-434.

[33]

MuellerS, EngleitnerT, MareschR, ZukowskaM, LangeS, KaltenbacherT, KonukiewitzB, ÖllingerR, ZwiebelM, StrongA, YenHY, BanerjeeR, LouzadaS, FuB, SeidlerB, GötzfriedJ, SchuckK, HassanZ, ArbeiterA, SchönhuberN, KleinS, VeltkampC, FriedrichM, RadL, BarenboimM, ZiegenhainC, HessJ, DoveyOM, EserS, ParekhS, Constantino-CasasF, de la RosaJ, SierraMI, FragaM, MayerleJ, KlöppelG, CadiñanosJ, LiuP, VassiliouG, WeichertW, SteigerK, EnardW, SchmidRM, YangF, UngerK, SchneiderG, VarelaI, BradleyA, SaurD, RadR. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 2018, 554769062-68.

[34]

NieS, SongY, HuK, ZuW, ZhangF, ChenL, MaQ, ZhouZ, JiaoS. CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance anti-tumor effects in gastric cancer by increasing cytotoxic effector cell accumulation and survival. Oncoimmunology, 2024, 1312358590.

[35]

NovielloD, MagerR, RodaG, BorroniRG, FiorinoG, VetranoS. The IL23-IL17 immune Axis in the treatment of ulcerative colitis: Successes, defeats, and ongoing challenges. Frontiers in Immunology, 2021, 12: 611256.

[36]

OgawaH, AbeH, YagiK, SetoY, UshikuT. Claudin-18 status and its correlation with HER2 and PD-L1 expression in gastric cancer with peritoneal dissemination. Gastric Cancer, 2024.

[37]

PerkhoferL, GoutJ, RogerE, Kude de AlmeidaF, Baptista SimoesC, WiesmullerL, SeufferleinT, KlegerA. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut, 2021, 703606-617.

[38]

QiC, GongJ, LiJ, LiuD, QinY, GeS, ZhangM, PengZ, ZhouJ, CaoY, ZhangX, LuZ, LuM, YuanJ, WangZ, WangY, PengX, GaoH, LiuZ, WangH, YuanD, XiaoJ, MaH, WangW, LiZ, ShenL. Claudin18.2-specific CAR T cells in Gastrointestinal cancers: Phase 1 trial interim results. Nature Medicine, 2022, 2861189-1198.

[39]

QiC, ZhangP, LiuC, ZhangJ, ZhouJ, YuanJ, LiuD, ZhangM, GongJ, WangX, LiJ, ZhangX, LiN, PengX, LiuZ, YuanD, BaffaR, WangY, ShenL. Safety and efficacy of CT041 in patients with refractory metastatic pancreatic cancer: A pooled analysis of two Early-Phase trials. Journal of Clinical Oncology, 2024. Jco2302314

[40]

SahinU, KoslowskiM, DhaeneK, UsenerD, BrandenburgG, SeitzG, HuberC, TüreciO. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clinical Cancer Research, 2008, 14237624-7634.

[41]

SpiegelJY, PatelS, MufflyL, HossainNM, OakJ, BairdJH, FrankMJ, ShirazP, SahafB, CraigJ, IglesiasM, YounesS, NatkunamY, OzawaMG, YangE, TamaresisJ, ChinnasamyH, EhlingerZ, ReynoldsW, LynnR, RotirotiMC, GkitsasN, AraiS, JohnstonL, LowskyR, MajznerRG, MeyerE, NegrinRS, RezvaniAR, SidanaS, ShizuruJ, WengWK, MullinsC, JacobA, KirschI, BazzanoM, ZhouJ, MackayS, BornheimerSJ, SchultzL, RamakrishnaS, DavisKL, KongKA, ShahNN, QinH, FryT, FeldmanS, MackallCL, MiklosDB. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: A phase 1 trial. Nature Medicine, 2021, 2781419-1431.

[42]

SunR, SunY, WuC, LiuY, ZhouM, DongY, DuG, LuoH, ShiB, JiangH, LiZ. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Molecular Therapy, 2023, 31113193-3209.

[43]

SungH, FerlayJ, SiegelRL, LaversanneM, SoerjomataramI, JemalA, BrayF. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C Ca: A Cancer Journal for Clinicians, 2021, 713209-249.

[44]

TangL, PanS, WeiX, XuX, WeiQ. Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development. Molecular Therapy, 2023, 31113146-3162.

[45]

TrembathHE, YehJJ, LopezNE. Gastrointestinal malignancy: Genetic implications to clinical applications. Cancer Treatment and Research, 2024, 192: 305-418.

[46]

VerstocktB, SalasA, SandsBE, AbrahamC, LeibovitzhH, NeurathMF, CasteeleV. IL-12 and IL-23 pathway Inhibition in inflammatory bowel disease. Nature Reviews. Gastroenterology & Hepatology, 2023, 207433-446.

[47]

WatersR, Sewastjanow-SilvaM, YamashitaK, AbdelhakeemA, IwataKK, MoranD, ElsoudaD, GuerreroA, PizziM, VicentiniER, ShanbhagN, TaA, ChatterjeeD, AjaniJA. Retrospective study of Claudin 18 isoform 2 prevalence and prognostic association in gastric and gastroesophageal junction adenocarcinoma. JCO Precis Oncol, 2024, 8: e2300543.

[48]

XiangZ, LiuH, HuY. DNA damage repair and cancer immunotherapy. Genome Instability & Disease, 2023, 44210-226.

[49]

Yang, Y., Yang, H., Alcaina, Y., Puc, J., Birt, A., Vedvyas, Y., Gallagher, M., Alla, S., Riascos, M. C., McCloskey, J. E., Du, K., Gonzalez-Valdivieso, J., Min, I. M., de Stanchina, E., Britz, M., von Hofe, E., & Jin, M. M. (2023). Inducible expression of interleukin-12 augments the efficacy of affinity-tuned chimeric antigen receptors in murine solid tumor models. Nat Commun, 14(1), 2068. https://doi.org/10.1038/s41467-023-37646-y

[50]

YaoX, AhmadzadehM, LuYC, LiewehrDJ, DudleyME, LiuF, SchrumpDS, SteinbergSM, RosenbergSA, RobbinsPF. Levels of peripheral CD4(+)FoxP3(+) regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood, 2012, 119245688-5696.

[51]

ZhuC, GuanX, ZhangX, LuanX, SongZ, ChengX, ZhangW, QinJJ. Targeting KRAS mutant cancers: From druggable therapy to drug resistance. Molecular Cancer, 2022, 211159.

[52]

Zimmermann, K., Kuehle, J., Dragon, A. C., Galla, M., Kloth, C., Rudek, L. S., Sandalcioglu, I. E., Neyazi, B., Moritz, T., Meyer, J., Rossig, C., Altvater, B., Eiz-Vesper, B., Morgan, M. A., Abken, H., & Schambach, A. (2020). Design and characterization of an All-in-One lentiviral vector system combining constitutive Anti-G(D2) CAR expression and inducible cytokines. Cancers (Basel), 12(2). https://doi.org/10.3390/cancers12020375

Funding

National Natural Science Foundation of China(82030076, 82470229)

Shenzhen Clinical Research Center of Hematology(LCYSSQ20220823091401002)

Sanming Project of Medicine in Shenzhen(SZSM202111004)

Shenzhen Key Laboratory Foundation(ZDSYS20200811143757022)

Medicine Plus Program of Shenzhen University(000003011601)

RIGHTS & PERMISSIONS

Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

AI Summary AI Mindmap
PDF

303

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/