Identification of novel phytotherapeutic agents for understanding hypertrophic cardiomyopathy via genetic mapping and advanced computational analysis

Abdullahi Tunde Aborode , Onifade Isreal Ayobami , Ammar Usman Danazumi , Christopher Busayo Olowosoke , Haruna Isiyaku Umar , Abraham Osinuga , Aeshah A. Awaji , Fatmah Ali Awaji , Ebenezer Ayomide Omojowolo , Najwa Ahmad Kuthi , Tanveer Shaikh , Babatunde Shuaib Anidu , Athanasios Alexiou , Ridwan Olamilekan Adesola , Zainab Olapade , Awah Favour Matthew , Blessing Ameh , Toluwalope Yinka Oni , Adetolase Azizat Bakre , Godfred Yawson Scott

Genome Instability & Disease ›› : 1 -25.

PDF
Genome Instability & Disease ›› : 1 -25. DOI: 10.1007/s42764-024-00141-9
Original Research Paper

Identification of novel phytotherapeutic agents for understanding hypertrophic cardiomyopathy via genetic mapping and advanced computational analysis

Author information +
History +
PDF

Abstract

Hypertrophic cardiomyopathy (HCM) is a monogenic cardiovascular disorder that has been poorly studied at the molecular, genetic, and computational levels. Here, we examined the genetic map of HCM polymorphic targets using a computational approach to identify new phytochemicals with potential therapeutic properties. We demonstrate the range of mutations associated with cardiomyopathies, and identify new associations between genes and phenotypes in this disease category. Specifically, our findings suggest that several genes associated with channelopathies might serve as genetic modifiers, altering the clinical features and severity of cardiomyopathic phenotypes, thus likely impacting disease manifestation.

Cite this article

Download citation ▾
Abdullahi Tunde Aborode, Onifade Isreal Ayobami, Ammar Usman Danazumi, Christopher Busayo Olowosoke, Haruna Isiyaku Umar, Abraham Osinuga, Aeshah A. Awaji, Fatmah Ali Awaji, Ebenezer Ayomide Omojowolo, Najwa Ahmad Kuthi, Tanveer Shaikh, Babatunde Shuaib Anidu, Athanasios Alexiou, Ridwan Olamilekan Adesola, Zainab Olapade, Awah Favour Matthew, Blessing Ameh, Toluwalope Yinka Oni, Adetolase Azizat Bakre, Godfred Yawson Scott. Identification of novel phytotherapeutic agents for understanding hypertrophic cardiomyopathy via genetic mapping and advanced computational analysis. Genome Instability & Disease 1-25 DOI:10.1007/s42764-024-00141-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AborodeAT, AdesolaRO, IdrisI, AdioWS, ScottGY, ChakomaM, OluwaseunAA, OnifadeIA, AdeoyeAF, AlukoBA, AbokJI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene, 2024, 11: 148651

[2]

AbrahamMJ, MurtolaT, SchulzR, PállS, SmithJC, HessB, et al. . GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1: 19-25

[3]

Al-KarmalawyAA, DahabMA, MetwalyAM, ElhadySS, ElkaeedEB, EissaIH, et al. . Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the h ACE2 receptor. Frontiers in Chemistry, 2021, 9: 661230

[4]

AkkusE, TayfurogluO, YildizM, KocakA. Accurate binding free energy method from end-state MD simulations. Journal of Chemical Information and Modeling, 2022, 62(17): 4095-4106

[5]

AmmiratiE, ContriR, CoppiniR, CecchiF, FrigerioM, OlivottoI. Pharmacological treatment of hypertrophic cardiomyopathy: Current practice and novel perspectives. European Journal of Heart Failure, 2016, 18(9): 1106-1118

[6]

AwajiAA, MaigoroAY, AborodeAT, AkintolaAA, FatobaDO, IdrisEB, IdrisAB, JafriS, ShoaibE, OnifadeIA, OlapadeZ. Identification of key molecular pathways and genes in BRCA1 and BRCA2-mutant ovarian cancer: Evidence from bioinformatics analysis. Genome Instability & Disease, 2024, 5(4): 164-182

[7]

BanT, OhueM, AkiyamaY. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Computational Biology and Chemistry, 2018, 73: 139-146

[8]

BenderBJ, GahbauerS, LuttensA, LyuJ, WebbCM, SteinRM, FinkEA, BaliusTE, CarlssonJ, IrwinJJ, ShoichetBK. A practical guide to large-scale docking. Nature Protocols, 2021, 16(10): 4799-4832

[9]

BergströmCA, LarssonP. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International Journal of Pharmaceutics, 2018, 540(1–2): 185-193

[10]

CahillTJ, AshrafianH, WatkinsH. Genetic cardiomyopathies causing heart failure. Circ Res, 2013, 113: 660-675

[11]

CapriottiE, CalabreseR, CasadioR. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 2006, 22: 2729-2734

[12]

ChakrabortyS, ChaudhuriD, ChaudhuriD, SinghV, BanerjeeS, ChowdhuryD, et al. . Connecting conformational stiffness of the protein with energy landscape by a single experiment. Nanoscale, 2022, 14: 7659-7673

[13]

ChenY, TanS, LiuM, LiJ. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scandinavian Cardiovascular Journal, 2018, 52(6): 335-339

[14]

ChengF, LiW, ZhouY, ShenJ, WuZ, LiuG, et al. . admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modelling, 2012, 52: 3099-3105

[15]

DanazumiAU, UmarHI. You must be flexible enough to be trained, Mr. Dynamics simulator. Molecular Diversity, 2023

[16]

DengN, ForliS, HeP, PerrymanA, WickstromL, VijayanRS, TiefenbrunnT, StoutD, GallicchioE, OlsonAJ, LevyRM. Distinguishing binders from false positives by free energy calculations: Fragment screening against the flap site of HIV protease. The Journal of Physical Chemistry B, 2015, 119(3): 976-988

[17]

ElliottP, AnderssonB, ArbustiniE, BilinskaZ, CecchiF, CharronP, DubourgO, KühlU, MaischB, McKennaWJ, MonserratL. Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial diseases. European Heart Journal, 2008, 29(2): 270-276

[18]

EmperadorA, OrozcoM. Discrete molecular dynamics approach to the study of disordered and aggregating proteins. Journal of Chemical Theory and Computation, 2017, 13(3): 1454-1461

[19]

EstevesF, RueffJ, KranendonkM. The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. Journal of Xenobiotics, 2021, 11(3): 94-114

[20]

ForleoC, D’ErchiaAM, SorrentinoS, ManzariC, ChiaraM, IacovielloM, et al. . Targeted next-generation sequencing detects novel gene–phenotype associations and expands the mutational spectrum in cardiomyopathies. PloS One, 2017, 12: e0181842

[21]

ForouzeshN, MishraN. An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules, 2021, 26: 2383

[22]

FriesnerRA, BanksJL, MurphyRB, HalgrenTA, KlicicJJ, MainzDT, RepaskyMP, KnollEH, ShelleyM, PerryJK, ShawDE. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 2004, 47(7): 1739-1749

[23]

FuH, ChenH, BlazhynskaM, Goulard Coderc de LacamE, SzczepaniakF, PavlovaA, ShaoX, GumbartJC, DehezF, RouxB, CaiW. Accurate determination of protein: Ligand standard binding free energies from molecular dynamics simulations. Nature Protocols, 2022, 17(4): 1114-1141

[24]

GalzitskayaOV, GarbuzynskiySO. Entropy capacity determines protein folding. Proteins: Structure Function and Bioinformatics, 2006, 63(1): 144-154

[25]

GapsysV, YildirimA, AldeghiM, KhalakY, Van der SpoelD, de GrootBL. Accurate absolute free energies for ligand–protein binding based on non-equilibrium approaches. Communications Chemistry, 2021, 4(1): 61

[26]

GuanL, YangH, CaiY, SunL, DiP, LiW, LiuG, TangY. ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 2019, 10(1): 148-157

[27]

GulatiA, JabbourA, IsmailTF, GuhaK, KhwajaJ, RazaS, et al. . Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. Jama, 2013, 309: 896-908

[28]

HarderE, DammW, MapleJ, WuC, ReboulM, XiangJY, WangL, LupyanD, DahlgrenMK, KnightJL, KausJW. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 2016, 12(1): 281-296

[29]

HeB, LuQ, LangJ, YuH, PengC, BingP, LiS, ZhouQ, LiangY, TianG. A new method for CTC images recognition based on machine learning. Frontiers in Bioengineering and Biotechnology, 2020, 8: 897

[30]

HershbergerRE, HedgesDJ, MoralesA. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nature Reviews Cardiology, 2013, 10(9): 531-547

[31]

HershbergerRE, SiegfriedJD. Update 2011: Clinical and genetic issues in familial dilated cardiomyopathy. Journal of the American College of Cardiology, 2011, 57(16): 1641-1649

[32]

HuangL, WuJ, LianB, ZhangD, ZhaiY, CaoL. Successful robot-assisted laparoscopic resection of pheochromocytoma in a patient with dilated cardiomyopathy: A case report on extremely high-risk anesthesia management. Medicine, 2023, 102(41): e35467

[33]

JiangX, YanM. Comparing the impact on the prognosis of acute myocardial infarction critical patients of using midazolam, propofol, and dexmedetomidine for sedation. BMC Cardiovascular Disorders, 2021, 21: 1-8

[34]

KarS, LeszczynskiJ. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on drug Discovery, 2020, 15(12): 1473-1487

[35]

KoberL, ThuneJJ, NielsenJC, HaarboJ, VidebaekL, KorupE, JensenG, HildebrandtP, SteffensenFH, BruunNE, EiskjaerH. Defibrillator implantation in patients with nonischemic systolic heart failure. New England Journal of Medicine, 2016, 375(13): 1221-1230

[36]

KrügerA, Gonçalves MaltarolloV, WrengerC, KronenbergerT. ADME profiling in drug discovery and a new path paved on silica. Drug discovery and development-new advances, 2019 NY Intechopen 1-30

[37]

LeeH-M, YuM-S, KazmiSR, OhSY, RheeK-H, BaeM-A, et al. . Computational determination of hERG-related cardiotoxicity of drug candidates. Bmc Bioinformatics, 2019, 20: 250

[38]

Lindahl, E., Abraham, M., Hess, B., & Spoel, V. D. GROMACS 2019.4 Source code 2019. https://doi.org/10.5281/ZENODO.3460414

[39]

LiuLC, VoorsAA, ValenteMA, van der MeerP. A novel approach to drug development in heart failure: Towards personalized medicine. Canadian Journal of Cardiology, 2014, 30(3): 288-295

[40]

LekM, KarczewskiKJ, MinikelEV, SamochaKE, BanksE, FennellT, et al. . Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536: 285-291

[41]

LekavichCL, BarksdaleDJ, NeelonV, WuJR. Heart failure preserved ejection fraction (HFpEF): An integrated and strategic review. Heart Failure Reviews, 2015, 20: 643-653

[42]

MarcusFI, McKennaWJ, SherrillD, BassoC, BauceB, BluemkeDA, et al. . Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed modification of the task force criteria. Circulation, 2010, 121: 1533-1541

[43]

MaronBJ. Clinical course and management of hypertrophic cardiomyopathy. New England Journal of Medicine, 2018, 379(7): 655-668

[44]

MaronBJ, MaronMS. Hypertrophic cardiomyopathy. The Lancet, 2013, 381: 242-255

[45]

MaronBJ, TowbinJA, ThieneG, AntzelevitchC, CorradoD, ArnettD, et al. . Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 2006, 113: 1807-1816

[46]

McMurrayJJV, PackerM, DesaiAS, GongJ, LefkowitzMP, RizkalaAR, et al. . Angiotensin–neprilysin inhibition versus enalapril in heart failure. New England Journal of Medicine, 2014, 371: 993-1004

[47]

MishraCB, PandeyP, SharmaRD, MalikMZ, MongreRK, LynnAM, et al. . Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach. Briefings in Bioinformatics, 2021, 22: 1346-1360

[48]

MunerettoC, ElliottP, AnastasakisA, BorgerM, BorggrefeM, CecchiF, CharronP, HagegeA, LafontA, LimongelliG, MahrholdtH. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. European Heart Journal, 2014, 35(39): 2733-2779

[49]

MustafaHA, AlbkryeAM, AbdAllaBM, KhairMA, AbdelwahidN, ElnasriHA. Computational determination of human PPARG gene: SNPs and prediction of their effect on protein functions of diabetic patients. Clinical and Translational Medicine, 2020, 9: 1-0

[50]

NouhraveshN, AhlbergG, GhouseJ, AndreasenC, SvendsenJH, HaunsøS, BundgaardH, WeekePE, OlesenMS. Analyses of more than 60,000 exomes questions the role of numerous genes previously associated with dilated cardiomyopathy. Molecular Genetics & Genomic Medicine, 2016, 4(6): 617-623

[51]

Ogu, C. C., & Maxa, J. L. (2000). Drug interactions due to cytochrome P450. In: Baylor University medical center proceedings, vol. 13, no. 4. Taylor & Francis, pp. 421–423. https://doi.org/10.1080/08998280.2000.11927719

[52]

OlowosokeCB, IbisanmiTA, EzeCJ, ShofundeAA, OlubenaTL, AkadiriO. Investigation of polymorphism role in protein structure and function for selected cancer and diabetes disease; a rationale to selection of targets for insilico drug screening. Informatics Medicine Unlocked, 2023, 42: 101342

[53]

OmoboyedeV, IbrahimO, UmarHI, BelloT, AdedejiAA, KhalidA, FayojegbeES, AyomideAB, ChukwuemekaPO. Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Computers in Biology and Medicine, 2022, 150: 106128

[54]

PatelCN, KumarSP, PandyaHA, RawalRM. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Molecular Diversity, 2021, 25: 421-433

[55]

Pérez-SerraA, ToroR, Sarquella-BrugadaG, de Gonzalo-CalvoD, CesarS, CarroE, Llorente-CortesV, IglesiasA, BrugadaJ, BrugadaR, CampuzanoO. Genetic basis of dilated cardiomyopathy. International Journal of Cardiology, 2016, 224: 461-472

[56]

PetrettaM, PirozziF, SassoL, PagliaA, BonaduceD. Review and meta-analysis of the frequency of familial dilated cardiomyopathy. American Journal of Cardiology, 2011, 108: 1171-1176

[57]

PiñeroJ, SaüchJ, SanzF, FurlongLI. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and Structural Biotechnology Journal, 2021, 19: 2960-2967

[58]

PonikowskiP, VoorsAA, AnkerSD, BuenoH, ClelandJG, CoatsAJ, FalkV, González-JuanateyJR, HarjolaVP, JankowskaEA, JessupM. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiologia Polska (Polish Heart Journal), 2016, 74(10): 1037-1147

[59]

RastelliG, RioAD, DegliespostiG, SgobbaM. Fast and accurate predictions of binding free energies using MM-PBSA and MM‐GBSA. Journal of Computational Chemistry, 2010, 31(4): 797-810

[60]

SargsyanK, GrauffelC, LimC. How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 2017, 13(4): 1518-1524

[61]

SavjaniKT, GajjarAK, SavjaniJK. Drug solubility: Importance and enhancement techniques. International Scholarly Research Notices, 2012, 2012(1): 195727

[62]

SemsarianC, InglesJ, MaronMS, MaronBJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2015, 65(12): 1249-1254

[63]

Sen-ChowdhryS, MorganRD, ChambersJC, McKennaWJ. Arrhythmogenic cardiomyopathy: Etiology, diagnosis, and treatment. Annual Review of Medicine, 2010, 61(1): 233-253

[64]

SherryST, WardMH, KholodovM, BakerJ, PhanL, SmigielskiEM, SirotkinK. dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 2001, 29(1): 308-311

[65]

ShuklaR, ChandraA, KumarA, KandpalP, AvashthiH, GoelVK, QamarI, SinghN, KelvinDJ, SinghTR. Repurposing of drugs against methyltransferase as potential Zika virus therapies. Scientific Reports, 2023, 13(1): 7870

[66]

TeekakirikulP, KellyMA, RehmHL, LakdawalaNK, FunkeBH. Inherited cardiomyopathies: Molecular genetics and clinical genetic testing in the postgenomic era. The Journal of Molecular Diagnostics, 2013, 15(2): 158-170

[67]

Valdés-TresancoMS, Valdés-TresancoME, ValientePA, MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 2021, 17(10): 6281-6291

[68]

VanommeslaegheK, HatcherE, AcharyaC, KunduS, ZhongS, ShimJ, DarianE, GuvenchO, LopesP, VorobyovI, MackerellAD Jr. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry, 2010, 31(4): 671-690

[69]

WalshR, ThomsonKL, WareJS, FunkeBH, WoodleyJ, McGuireKJ, MazzarottoF, BlairE, SellerA, TaylorJC, MinikelEV. Reassessment of mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genetics in Medicine, 2017, 19(2): 192-203

[70]

WangB, WangJ, WangLF, YangF, XuL, LiWX, HeY, ZuoL, YangQL, ShaoH, HuD. Genetic analysis of monoallelic double MYH7 mutations responsible for familial hypertrophic cardiomyopathy. Molecular Medicine Reports, 2019, 20(6): 5229-5238

[71]

WarrenGL, AndrewsCW, CapelliAM, ClarkeB, LaLondeJ, LambertMH, LindvallM, NevinsN, SemusSF, SengerS, TedescoG. A critical assessment of docking programs and scoring functions. Journal of Medicinal Chemistry, 2006, 49(20): 5912-5931

[72]

WaterhouseA, BertoniM, BienertS, StuderG, TaurielloG, GumiennyR, et al. . SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 2018, 46: W296-303

[73]

WijnkerPJ, van Der VeldenJ. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2020, 1866(8): 165774

[74]

XieX, WangX, LiangY, YangJ, WuY, LiL, SunX, BingP, HeB, TianG, ShiX. Evaluating cancer-related biomarkers based on pathological images: A systematic review. Frontiers in Oncology, 2021, 11: 763527

[75]

YangH, LouC, SunL, LiJ, CaiY, WangZ, et al. . admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35: 1067-1069

[76]

YuW, HeX, VanommeslaegheK, MacKerellAD Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451-2468

[77]

YuY, WangL, NiS, LiD, LiuJ, ChuHY, ZhangG. Targeting loop3of sclerostin preserves its cardiovascular protective action and promotesbone formation. Nature Communications, 2022, 13(1): 4241

[78]

ZhangZ, MitevaMA, WangL, AlexovE. Analyzing effects of naturally occurring missense mutations. Computational and Mathematical Methods in Medicine, 2012, 2012(1): 805827

[79]

ZhaoY, FengY, ZhangYM, DingXX, SongYZ, ZhangAM, LiuL, ZhangH, DingJH, XiaXS. Targeted next-generation sequencing of candidate genes reveals novel mutations in patients with dilated cardiomyopathy. International Journal of Molecular Medicine, 2015, 36(6): 1479-1486

[80]

ZiaeianB, FonarowGC. Epidemiology and aetiology of heart failure. Nature Reviews Cardiology, 2016, 13(6): 368-378

RIGHTS & PERMISSIONS

Shenzhen University School of Medicine; Fondazione Istituto FIRC di Oncologia Molecolare

AI Summary AI Mindmap
PDF

324

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/