Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma

Jiahua Lv, Pengcheng Gong, Gongwei Jia, Wen Li

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (5) : 197-209.

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (5) : 197-209. DOI: 10.1007/s42764-024-00138-4
Review Article

Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma

Author information +
History +

Abstract

Clear cell renal cell carcinoma (ccRCC) predominantly originates from renal tubular epithelial cells and displays resistance to conventional chemotherapy and radiation therapy. Multi-omics studies have delineated the intimate correlation between the molecular characteristics of ccRCC and chromosomal alterations, suggesting that interventions targeting DNA damage repair (DDR) could potentially enhance patient prognosis. This comprehensive review encompasses ccRCC epidemiology, clinical classification, diagnosis, and therapeutic strategies, with a focus on its molecular mechanisms and tumor microenvironment (TME). Special emphasis is placed on the role of DDR in ccRCC development, summarizing the latest advances in our understanding of key pathways, including mismatch repair, base excision repair, nucleotide excision repair, non-homologous end joining, and homologous recombination repair. Furthermore, the review addresses the challenges associated with current treatment approaches, such as the adaptability and resistance of ccRCC to vascular endothelial growth factor (VEGF) inhibitors and mTOR pathway inhibitors, while also exploring emerging strategies for targeting DDR in ccRCC.

Cite this article

Download citation ▾
Jiahua Lv, Pengcheng Gong, Gongwei Jia, Wen Li. Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma. Genome Instability & Disease, 2024, 5(5): 197‒209 https://doi.org/10.1007/s42764-024-00138-4

References

AdemikanraAF, OyewoleOM, OlayiwolaAO. Common hotspots of cancer chemotherapy. Genome Instability & Disease, 2023, 4(3): 181-196
CrossRef Google scholar
AmaroF, PisoeiroC, ValenteMJ, BastosML, de PinhoG, CarvalhoP, PintoJ. Sunitinib versus Pazopanib Dilemma in Renal Cell Carcinoma: New insights into the in vitro metabolic impact, efficacy, and Safety. International Journal of Molecular Sciences, 2022, 23(17): 9898
CrossRef Google scholar
ApostolouZ, ChatzinikolaouG, StratigiK, GarinisGA. Nucleotide excision repair and transcription-Associated Genome Instability. BioEssays: News and Reviews in Molecular Cellular and Developmental Biology, 2019, 41(4): e1800201
CrossRef Google scholar
Aragon-ChingJB. Balancing efficacy and quality of life measurements among metastatic renal cell carcinoma (RCC) studies. Oncoscience, 2021, 8: 40-45
CrossRef Google scholar
Au, L., Hatipoglu, E., Robert de Massy, M., Litchfield, K., Beattie, G., Rowan, A., Schnidrig, D., Thompson, R., Byrne, F., Horswell, S., Fotiadis, N., Hazell, S., Nicol, D., Shepherd, S. T. C., Fendler, A., Mason, R., Del Rosario, L., Edmonds, K., & Lingard, K. (2021).… TRACERx Renal Consortium. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell, 39(11), 1497–1518.e11. https://doi.org/10.1016/j.ccell.2021.10.001
BarataPC, RiniBI. Treatment of renal cell carcinoma: Current status and future directions. CA: A Cancer Journal for Clinicians, 2017, 67(6): 507-524
CrossRef Google scholar
BeardWA, HortonJK, PrasadR, WilsonSH. Eukaryotic base excision repair: New approaches Shine light on mechanism. Annual Review of Biochemistry, 2019, 88: 137-162
CrossRef Google scholar
BergmannL, MauteL, GuschmannM. Temsirolimus for advanced renal cell carcinoma. Expert Review of Anticancer Therapy, 2014, 14(1): 9-21
CrossRef Google scholar
BleeAM, GallagherKS, KimHS, KimM, KharatSS, TrollCR, D’SouzaA, ParkJ, NeuferPD, SchärerOD, ChazinWJ. XPA tumor variant leads to defects in NER that sensitize cells to cisplatin. NAR Cancer, 2024, 6(1): zcae013
CrossRef Google scholar
BraunDA, HouY, BakounyZ, FicialM, Sant’ AngeloM, FormanJ, Ross-MacdonaldP, BergerAC, JegedeOA, ElaginaL, SteinharterJ, SunM, Wind-RotoloM, PignonJC, CherniackAD, LichtensteinL, NeubergD, CatalanoP, FreemanGJ, ChoueiriTK. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nature Medicine, 2020, 26(6): 909-918
CrossRef Google scholar
BrugarolasJ. Molecular genetics of clear-cell renal cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2014, 32(18): 1968-1976
CrossRef Google scholar
BuiTM, Butin-IsraeliV, WiesolekHL, ZhouM, RehringJF, WiesmüllerL, WuJD, YangGY, HanauerSB, SebagJA, SumaginR. Neutrophils alter DNA Repair Landscape to Impact Survival and shape distinct therapeutic phenotypes of Colorectal Cancer. Gastroenterology, 2021, 161(1): 225-238e15
CrossRef Google scholar
CaraccioloD, RiilloC, Di MartinoMT, TagliaferriP, TassoneP. Alternative non-homologous End-Joining: Error-prone DNA repair as Cancer’s Achilles’ Heel. Cancers, 2021, 13(6): 1392
CrossRef Google scholar
CarducciMA. Flashback foreword: Pazopanib in Renal Cell Carcinoma and overall survival with Sunitinib Versus Interferon-α in metastatic renal cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2023, 41(11): 1955-1956
CrossRef Google scholar
ChabanonRM, MorelD, EychenneT, Colmet-DaageL, BajramiI, DorvaultN, GarridoM, MeisenbergC, LambA, NgoC, HopkinsSR, RoumeliotisTI, JounyS, HénonC, Kawai-KawachiA, AstierC, KondeA, Del NeryE, MassardC, Postel-VinayS. PBRM1 Deficiency confers synthetic lethality to DNA repair inhibitors in Cancer. Cancer Research, 2021, 81(11): 2888-2902
CrossRef Google scholar
ChangHHY, PannunzioNR, AdachiN, LieberMR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 2017, 18(8): 495-506
CrossRef Google scholar
ChangWS, ShenTC, LiaoJM, TsaiYT, HsiaTC, WuHC, TsaiCW, BauDT. Significant contribution of DNA repair human 8-Oxoguanine DNA N-Glycosylase 1 genotypes to renal cell carcinoma. OncoTargets and Therapy, 2020, 13: 1583-1591
CrossRef Google scholar
ChiKN, RathkopfD, SmithMR, EfstathiouE, AttardG, OlmosD, LeeJY, SmallEJ, Pereira de Santana GomesAJ, RoubaudG, SaadM, ZurawskiB, SakaloV, MasonGE, FrancisP, WangG, WuD, DiorioB, Lopez-GitlitzA. Niraparib and Abiraterone acetate for metastatic castration-resistant prostate Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2023, 41(18): 3339-3351
CrossRef Google scholar
ChoueiriTK, KaelinWG. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nature Medicine, 2020, 26(10): 1519-1530
CrossRef Google scholar
de VelascoG, MiaoD, VossMH, HakimiAA, HsiehJJ, TannirNM, TamboliP, ApplemanLJ, RathmellWK, Van AllenEM, ChoueiriTK. Tumor Mutational load and Immune parameters across metastatic renal cell Carcinoma Risk groups. Cancer Immunology Research, 2016, 4(10): 820-822
CrossRef Google scholar
DeBerardinisRJ. Tumor Microenvironment, Metabolism, and Immunotherapy. The New England Journal of Medicine, 2020, 382(9): 869-871
CrossRef Google scholar
DelahuntB, EbleJN, EgevadL, SamaratungaH. Grading of renal cell carcinoma. Histopathology, 2019, 74(1): 4-17
CrossRef Google scholar
DengL, WangF, LuanQ, LiuW, TengJ, BanY. Ultrasound diagnosis of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion in children and adolescents. Current Medical Imaging, 2023
CrossRef Google scholar
DingL, KimHJ, WangQ, KearnsM, JiangT, OhlsonCE, LiBB, XieS, LiuJF, StoverEH, HowittBE, BronsonRT, LazoS, RobertsTM, FreemanGJ, KonstantinopoulosPA, MatulonisUA, ZhaoJJ. PARP inhibition elicits STING-Dependent Antitumor immunity in Brca1-Deficient ovarian Cancer. Cell Reports, 2018, 25(11): 2972-2980e5
CrossRef Google scholar
DoigKD, FellowesAP, FoxSB. Homologous recombination Repair Deficiency: An overview for pathologists. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc, 2023, 36(3): 100049
CrossRef Google scholar
FengC, DingG, JiangH, DingQ, WenH. Loss of MLH1 confers resistance to PI3Kβ inhibitors in renal clear cell carcinoma with SETD2 mutation. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 2015, 36(5): 3457-3464
CrossRef Google scholar
Fernandez-LeiroR, Bhairosing-KokD, KunetskyV, LaffeberC, WinterwerpHH, GroothuizenF, FishA, LebbinkJHG, FriedhoffP, SixmaTK, LamersMH. The selection process of licensing a DNA mismatch for repair. Nature Structural & Molecular Biology, 2021, 28(4): 373-381
CrossRef Google scholar
FishelR. Mismatch repair. The Journal of Biological Chemistry, 2015, 290(44): 26395-26403
CrossRef Google scholar
FizaziK, PiulatsJM, ReaumeMN, OstlerP, McDermottR, GingerichJR, PintusE, SridharSS, BamburyRM, EmmeneggerU, LindbergH, MorrisD, NolèF, StaffurthJ, RedfernC, SáezMI, AbidaW, DaugaardG, HeidenreichATRITON3 Investigators. Rucaparib or Physician’s choice in metastatic prostate Cancer. The New England Journal of Medicine, 2023, 388(8): 719-732
CrossRef Google scholar
FuQ, XuL, WangY, JiangQ, LiuZ, ZhangJ, ZhouQ, ZengH, TongS, WangT, QiY, HuB, FuH, XieH, ZhouL, ChangY, ZhuY, DaiB, ZhangW, XuJ. Tumor-associated macrophage-derived Interleukin-23 interlinks kidney Cancer glutamine addiction with Immune Evasion. European Urology, 2019, 75(5): 752-763
CrossRef Google scholar
GedY, ChaimJL, DiNataleRG, KnezevicA, KotechaRR, CarloMI, LeeCH, FosterA, FeldmanDR, TeoMY, IyerG, ChanT, PatilS, MotzerRJ, HakimiAA, VossMH. DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. Journal for Immunotherapy of Cancer, 2020, 8(1): e000230
CrossRef Google scholar
GiacosaS, PilletC, SéraudieI, GuyonL, WallezY, RoelantsC, BattailC, EvrardB, ChalmelF, BaretteC, SoleilhacE, FauvarqueMO, FranquetQ, SarrazinC, PeilleronN, FiardG, LongJA, DescotesJL, CochetC, FilholO. Cooperative Blockade of CK2 and ATM kinases drives apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS overproduction. Cancers, 2021, 13(3): 576
CrossRef Google scholar
GongW, YangR, WangZ. DNA methylation regulator-based signature for predicting clear cell renal cell carcinoma prognosis. American Journal of Translational Research, 2023, 15(4): 2443-2459
GrayRE, HarrisGT. Renal cell carcinoma: Diagnosis and management. American Family Physician, 2019, 99(3): 179-184
GuoE, WuC, MingJ, ZhangW, ZhangL, HuG. The clinical significance of DNA damage repair signatures in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2020, 11: 593039
CrossRef Google scholar
GuoY, FanB, LiM. PARP molecular functions and applications of PARP inhibitors in cancer treatment. Genome Instability & Disease, 2023, 4(3): 137-153
CrossRef Google scholar
GuptaN, MatsumotoT, HiratsukaK, Garcia SaizE, GalichonP, MiyoshiT, SusaK, TatsumotoN, YamashitaM, MorizaneR. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Science Translational Medicine, 2022, 14(634): eabj4772
CrossRef Google scholar
HagiwaraM, FushimiA, MatsumotoK, OyaM. The significance of PARP1 as a biomarker for Predicting the response to PD-L1 blockade in patients with PBRM1-mutated Clear Cell Renal Cell Carcinoma. European Urology, 2022, 81(2): 145-148
CrossRef Google scholar
HakimiAA, OstrovnayaI, RevaB, SchultzN, ChenYB, GonenM, LiuH, TakedaS, VossMH, TickooSK, ReuterVE, RussoP, ChengEH, SanderC, MotzerRJ, HsiehJJccRCC Cancer Genome Atlas (KIRC TCGA) Research Network investigators. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: A report by MSKCC and the KIRC TCGA research network. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2013, 19(12): 3259-3267
CrossRef Google scholar
HakimiAA, TickooSK, JacobsenA, SarungbamJ, SfakianosJP, SatoY, MorikawaT, KumeH, FukayamaM, HommaY, ChenYB, SankinA, ManoR, ColemanJA, RussoP, OgawaS, SanderC, HsiehJJ, ReuterVE. TCEB1-mutated renal cell carcinoma: A distinct genomic and morphological subtype. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc, 2015, 28(6): 845-853
CrossRef Google scholar
HasanovE, JonaschE. MK-6482 as a potential treatment for Von Hippel-Lindau disease-associated clear cell renal cell carcinoma. Expert Opinion on Investigational Drugs, 2021, 30(5): 495-504
CrossRef Google scholar
HenskeEP, ChengL, HakimiAA, ChoueiriTK, BraunDA. Chromophobe renal cell carcinoma. Cancer Cell, 2023, 41(8): 1383-1388
CrossRef Google scholar
HsiehJJ, PurdueMP, SignorettiS, SwantonC, AlbigesL, SchmidingerM, HengDY, LarkinJ, FicarraV. Renal cell carcinoma. Nature Reviews Disease Primers, 2017, 3: 17009
CrossRef Google scholar
HuJ, WangSG, HouY, ChenZ, LiuL, LiR, LiN, ZhouL, YangY, WangL, WangL, YangX, LeiY, DengC, LiY, DengZ, DingY, KuangY, YaoZ, ChenK. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nature Genetics, 2024, 56(3): 442-457
CrossRef Google scholar
HussmannJA, LingJ, RavisankarP, YanJ, CirincioneA, XuA, SimpsonD, YangD, BothmerA, Cotta-RamusinoC, WeissmanJS, AdamsonB. Mapping the genetic landscape of DNA double-strand break repair. Cell, 2021, 184(22): 5653-5669e25
CrossRef Google scholar
JahangirM, YazdaniO, KahriziMS, SoltanzadehS, JavididashtbayazH, MivefroshanA, IlkhaniS, EsbatiR. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): A rapidly evolving strategy. Cancer Cell International, 2022, 22(1): 401
CrossRef Google scholar
JiF, ZhangF, ZhangM, LongK, XiaM, LuF, LiE, ChenJ, LiJ, ChenZ, JingL, JiaS, YangR, HuZ, GuoZ. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway. Journal of Hematology & Oncology, 2021, 14(1): 152
CrossRef Google scholar
JiangYL, KroskyDJ, SeipleL, StiversJT. Uracil-directed ligand tethering: An efficient strategy for uracil DNA glycosylase (UNG) inhibitor development. Journal of the American Chemical Society, 2005, 127(49): 17412-17420
CrossRef Google scholar
JingX, QinX, LiuH, LiuH, WangH, QinJ, ZhangY, CaoS, FanX. DNA damage response alterations in clear cell renal cell carcinoma: Clinical, molecular, and prognostic implications. European Journal of Medical Research, 2024, 29(1): 107
CrossRef Google scholar
JobertL, SkjeldamHK, DalhusB, GalashevskayaA, VågbøCB, BjøråsM, NilsenH. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Molecular Cell, 2013, 49(2): 339-345
CrossRef Google scholar
JonaschE, FutrealPA, DavisIJ, BaileyST, KimWY, BrugarolasJ, GiacciaAJ, KurbanG, PauseA, FrydmanJ, ZuritaAJ, RiniBI, SharmaP, AtkinsMB, WalkerCL, RathmellWK. State of the science: An update on renal cell carcinoma. Molecular Cancer Research: MCR, 2012, 10(7): 859-880
CrossRef Google scholar
JonaschE, HasanovE, CornPG, MossT, ShawKR, StovallS, MarcottV, GanB, BirdS, WangX, DoKA, AltamiranoPF, ZuritaAJ, DoyleLA, LaraPN, TannirNM. A randomized phase 2 study of MK-2206 versus everolimus in refractory renal cell carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2017, 28(4): 804-808
CrossRef Google scholar
JonaschE, WalkerCL, RathmellWK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nature Reviews Nephrology, 2021, 17(4): 245-261
CrossRef Google scholar
KangTH. Circadian rhythm of NER and ATR pathways. Biomolecules, 2021, 11(5): 715
CrossRef Google scholar
KanuN, GrönroosE, MartinezP, BurrellRA, GohY, BartkovaX, Maya-MendozaJ, MistríkA, RowanM, PatelAJ, RabinowitzH, EastA, WilsonP, SantosG, McGranahanCR, GulatiN, GerlingerS, BirkbakM, JoshiNJ, SwantonT. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene, 2015, 34(46): 5699-5708
CrossRef Google scholar
KarpovaY, GuoD, MakhovP, HainesAM, MarkovDA, KolenkoV, TulinAV. Poly(ADP)-Ribosylation inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers, 2021, 13(19): 4973
CrossRef Google scholar
KaushikAK, TarangeloA, BoroughsLK, RagavanM, ZhangY, WuCY, LiX, AhumadaK, ChiangJC, TcheuyapVT, SaatchiF, DoQN, YongC, RosalesT, StevensC, RaoAD, FaubertB, PachnisP, ZachariasLG, DeBerardinisRJ. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Science Advances, 2022, 8(50): eabp8293
CrossRef Google scholar
KrishnaC, DiNataleRG, KuoF, SrivastavaRM, VuongL, ChowellD, GuptaS, VanderbiltC, PurohitTA, LiuM, KanslerE, NixonBG, ChenYB, MakarovV, BlumKA, AttallaK, WengS, SalmansML, GolkaramM, HakimiAA. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39(5): 662-677e6
CrossRef Google scholar
KrokanHE, BjøråsM. Base excision repair. Cold Spring Harbor Perspectives in Biology, 2013, 5(4): a012583
CrossRef Google scholar
LaiY, LiZ, LuZ, ZhengH, ChenC, LiuC, YangY, TangF, HeZ. Roles of DNA damage repair and precise targeted therapy in renal cancer (review). Oncology Reports, 2022, 48(6): 213
CrossRef Google scholar
Le PageC, AmuzuS, RahimiK, GotliebW, RagoussisJ, ToninPN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Seminars in Cancer Biology, 2021, 77: 110-126
CrossRef Google scholar
LebraudE, PinnaG, SiberchicotC, DepagneJ, BussoD, FantiniD, IrbahL, RobeskaE, KratassioukG, RavanatJL, EpeB, RadicellaJP, CampalansA. Chromatin recruitment of OGG1 requires cohesin and mediator and is essential for efficient 8-oxoG removal. Nucleic Acids Research, 2020, 48(16): 9082-9097
CrossRef Google scholar
LeeJB, ChoWK, ParkJ, JeonY, KimD, LeeSH, FishelR. Single-molecule views of MutS on mismatched DNA. Dna Repair, 2014, 20: 82-93
CrossRef Google scholar
LiX, HeyerWD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research, 2008, 18(1): 99-113
CrossRef Google scholar
LiC, ZouR, ZhangH, WangY, QiuB, QiuS, WangW, XuY. Upregulation of phosphoinositide 3-kinase prevents sunitinib-induced cardiotoxicity in vitro and in vivo. Archives of Toxicology, 2019, 93(6): 1697-1712
CrossRef Google scholar
LiaoC, HuL, ZhangQ. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nature Reviews Urology, 2024
CrossRef Google scholar
LinehanWM, RickettsCJ. The Cancer Genome Atlas of renal cell carcinoma: Findings and clinical implications. Nature Reviews Urology, 2019, 16(9): 539-552
CrossRef Google scholar
LongZ, SunC, TangM, WangY, MaJ, YuJ, WeiJ, MaJ, WangB, XieQ, WenJ. Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma. Cell Discovery, 2022, 8(1): 68
CrossRef Google scholar
LutzSZ, UllrichA, HäringHU, UllrichS, GerstF. Sunitinib specifically augments glucose-induced insulin secretion. Cellular Signalling, 2017, 36: 91-97
CrossRef Google scholar
MacKenzieMJ, RiniBI, ElsonP, SchwandtA, WoodL, TrinkhausM, BjarnasonG, KnoxJ. Temsirolimus in VEGF-refractory metastatic renal cell carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2011, 22(1): 145-148
CrossRef Google scholar
MarteijnJA, LansH, VermeulenW, HoeijmakersJHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 2014, 15(7): 465-481
CrossRef Google scholar
McRonaldFE, MorrisMR, GentleD, WinchesterL, BabanD, RagoussisJ, ClarkeNW, BrownMD, KishidaT, YaoM, LatifF, MaherER. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Molecular Cancer, 2009, 8: 31
CrossRef Google scholar
MetcalfJL, BradshawPS, KomosaM, GreerSN, MeynS, OhhM. K63-ubiquitylation of VHL by SOCS1 mediates DNA double-strand break repair. Oncogene, 2014, 33(8): 1055-1065
CrossRef Google scholar
MonteiroFSM, SoaresA, RizzoA, SantoniM, MollicaV, GrandeE, MassariF. The role of immune checkpoint inhibitors (ICI) as adjuvant treatment in renal cell carcinoma (RCC): A systematic review and meta-analysis. Clinical Genitourinary Cancer, 2023, 21(3): 324-333
CrossRef Google scholar
MullinsEA, RodriguezAA, BradleyNP, EichmanBF. Emerging roles of DNA glycosylases and the base excision repair pathway. Trends in Biochemical Sciences, 2019, 44(9): 765-781
CrossRef Google scholar
NaJC, NagayaN, RhaKH, HanWK, KimIY. DNA damage response pathway alteration in locally Advanced clear-cell renal-cell carcinoma is Associated with a poor outcome. Clinical Genitourinary Cancer, 2019, 17(4): 299-305e1
CrossRef Google scholar
NickersonML, JaegerE, ShiY, DurocherJA, MahurkarS, ZaridzeD, MatveevV, JanoutV, KollarovaH, BenckoV, NavratilovaM, Szeszenia-DabrowskaN, MatesD, MukeriaA, HolcatovaI, SchmidtLS, ToroJR, KaramiS, HungR, MooreLE. Improved identification of Von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2008, 14(15): 4726-4734
CrossRef Google scholar
Nieto MorenoN, OlthofAM, SvejstrupJQ. Transcription-coupled nucleotide excision repair and the Transcriptional Response to UV-Induced DNA damage. Annual Review of Biochemistry, 2023, 92: 81-113
CrossRef Google scholar
NiuS, LiuK, XuY, PengC, YuY, HuangQ, WuS, CuiB, HuangY, MaX, ZhangX, WangB. Genomic Landscape of Chinese clear cell renal cell carcinoma patients with venous tumor Thrombus identifies chromosome 9 and 14 deletions and related immunosuppressive microenvironment. Frontiers in Oncology, 2021, 11: 646338
CrossRef Google scholar
OrtegaJ, LeeGS, GuL, YangW, LiGM. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Research, 2021, 31(5): 542-553
CrossRef Google scholar
Pal, S. K., Tran, B., Haanen, J. B. A. G., Hurwitz, M. E., Sacher, A., Tannir, N. M., Budde, L. E., Harrison, S. J., Klobuch, S., Patel, S. S., Meza, L., Dequeant, M. L., Ma, A., He, Q. A., Williams, L. M., Keegan, A., Gurary, E. B., Dar, H., Karnik, S., & Srour, S. A. (2024). CD70-Targeted allogeneic CAR T-Cell therapy for Advanced Clear Cell Renal Cell Carcinoma. Cancer Discovery, OF1–OF14. https://doi.org/10.1158/2159-8290.CD-24-0102
PantelidouC, SonzogniO, De Oliveria TaveiraM, MehtaAK, KothariA, WangD, VisalT, LiMK, PintoJ, CastrillonJA, CheneyEM, BouwmanP, JonkersJ, RottenbergS, GuerrieroJL, WulfGM, ShapiroGI. PARP inhibitor efficacy depends on CD8 + T-cell recruitment via Intratumoral STING pathway activation in BRCA-Deficient models of triple-negative breast Cancer. Cancer Discovery, 2019, 9(6): 722-737
CrossRef Google scholar
PasquiA, BoddiA, CampanacciDA, ScocciantiG, BerniniA, GrassoD, GambaleE, ScolariF, PalchettiI, PalombaA, FancelliS, CalimanE, AntonuzzoL, PillozziS. Alteration of the Nucleotide Excision Repair (NER) pathway in soft tissue sarcoma. International Journal of Molecular Sciences, 2022, 23(15): 8360
CrossRef Google scholar
Peña-LlopisS, Vega-Rubín-de-CelisS, LiaoA, LengN, Pavía-JiménezA, WangS, YamasakiT, ZhrebkerL, SivanandS, SpenceP, KinchL, HambuchT, JainS, LotanY, MargulisV, SagalowskyAI, SummerourPB, KabbaniW, WongSWW, BrugarolasJ. BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 2012, 44(7): 751-759
CrossRef Google scholar
PengL, LiangJ, WangQ, ChenG. A DNA damage repair gene signature Associated with Immunotherapy Response and Clinical Prognosis in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2022, 13: 798846
CrossRef Google scholar
ProszA, DuanH, TiszaV, SahgalP, TopkaS, KlusGT, BörcsökJ, SztupinszkiZ, HanlonT, DiossyM, VizkeletiL, StormoenDR, CsabaiI, PappotH, VijaiJ, OffitK, RiedT, SethiN, MouwKW, SzallasiZ. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. Scientific Reports, 2023, 13(1): 20567
CrossRef Google scholar
RathmellWK, RumbleRB, Van VeldhuizenPJ, Al-AhmadieH, EmamekhooH, HaukeRJ, LouieAV, MilowskyMI, MolinaAM, RoseTL, SivaS, ZaorskyNG, ZhangT, QamarR, KungelTM, LewisB, SingerEA. Management of metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2022, 40(25): 2957-2995
CrossRef Google scholar
ReinfeldBI, RathmellWK, KimTK, RathmellJC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular & Molecular Immunology, 2022, 19(1): 46-58
CrossRef Google scholar
RenW, XueB, ChenM, LiuL, ZuX. Low expression of ATM indicates a poor prognosis in Clear Cell Renal Cell Carcinoma. Clinical Genitourinary Cancer, 2019, 17(3): e433-e439
CrossRef Google scholar
RiniBI, CampbellSC, EscudierB. Renal cell carcinoma. Lancet (London England), 2009, 373(9669): 1119-1132
CrossRef Google scholar
SancarA, TangMS. Nucleotide excision repair. Photochemistry and Photobiology, 1993, 57(5): 905-921
CrossRef Google scholar
SangL, DongR, LiuR, HaoQ, BaiW, SunJ. Caenorhabditis elegans NHR-14/HNF4α regulates DNA damage-induced apoptosis through cooperating with cep-1/p53. Cell Communication and Signaling: CCS, 2022, 20(1): 135
CrossRef Google scholar
SantosM, LanillosJ, Roldan-RomeroJM, CaleirasE, Montero-CondeC, CascónA, ClimentMA, AngueraG, HernandoS, LaínezN, RobledoM, RoblesL, de VelascoG, García-DonasJ, Rodriguez-AntonaC. Prevalence of pathogenic germline variants in patients with metastatic renal cell carcinoma. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2021, 23(4): 698-704
CrossRef Google scholar
SatoY, YoshizatoT, ShiraishiY, MaekawaS, OkunoY, KamuraT, ShimamuraT, Sato-OtsuboA, NagaeG, SuzukiH, NagataY, YoshidaK, KonA, SuzukiY, ChibaK, TanakaH, NiidaA, FujimotoA, TsunodaT, OgawaS. Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genetics, 2013, 45(8): 860-867
CrossRef Google scholar
ScullyR, PandayA, ElangoR, WillisNA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019, 20(11): 698-714
CrossRef Google scholar
SeidelP, RubarthA, ZodelK, PeighambariA, NeumannF, FederkielY, HuangH, HoefflinR, AdlesicM, WittC, HoffmannDJ, MetzgerP, LindemannRK, ZenkeFT, SchellC, BoerriesM, von ElverfeldtD, ReichardtW, FolloM, FrewIJ. ATR represents a therapeutic vulnerability in clear cell renal cell carcinoma. JCI Insight, 2022, 7(24): e156087
CrossRef Google scholar
SiegelRL, GiaquintoAN, JemalA. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 2024, 74(1): 12-49
CrossRef Google scholar
TanSK, WelfordSM. Lipid in Renal Carcinoma: Queen Bee to target?. Trends in Cancer, 2020, 6(6): 448-450
CrossRef Google scholar
Topolska-WośAM, SugitaniN, CordobaJJ, MeurL, MeurKVL, KimRA, YeoHS, RosenbergJE, HammelD, SchärerM, ChazinWJ. A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Research, 2020, 48(4): 2173-2188
CrossRef Google scholar
TurJ, WebsterRM. The renal cell carcinoma drug market. Nature Reviews Drug Discovery, 2024, 23(1): 16-17
CrossRef Google scholar
WangXS, LeeBJ, ZhaS. The recent advances in non-homologous end-joining through the lens of lymphocyte development. Dna Repair, 2020, 94: 102874
CrossRef Google scholar
WangC, WangY, HongT, YeJ, ChuC, ZuoL, ZhangJ, CuiX. Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death and Differentiation, 2021, 28(3): 932-951
CrossRef Google scholar
WhitakerAM, StarkWJ, FreudenthalBD. Processing oxidatively damaged bases at DNA strand breaks by APE1. Nucleic Acids Research, 2022, 50(16): 9521-9533
CrossRef Google scholar
WuJ, WangH, RickettsCJ, YangY, MerinoMJ, ZhangH, ShiG, GanH, LinehanWM, ZhuY, YeD. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer, 2019, 125(7): 1060-1069
CrossRef Google scholar
WuG, LiT, ChenY, YeS, ZhouS, TianX, AnwaierA, ZhuS, XuW, HaoX, YeD, ZhangH. Deciphering glutamine metabolism patterns for malignancy and tumor microenvironment in clear cell renal cell carcinoma. Clinical and Experimental Medicine, 2024, 24(1): 152
CrossRef Google scholar
XiangZ, LiuH, HuY. DNA damage repair and cancer immunotherapy. Genome Instability & Disease, 2023, 4(4): 210-226
CrossRef Google scholar
XieH, SongJ, GodfreyJ, RiscalR, SkuliN, NissimI, SimonMC. Glycogen metabolism is dispensable for tumour progression in clear cell renal cell carcinoma. Nature Metabolism, 2021, 3(3): 327-336
CrossRef Google scholar
XuL, ZhuY, ChenL, AnH, ZhangW, WangG, LinZ, XuJ. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Annals of Surgical Oncology, 2014, 21(9): 3142-3150
CrossRef Google scholar
YangXD, KongFE, QiL, LinJX, YanQ, LoongJHC, XiSY, ZhaoY, ZhangY, YuanYF, MaNF, MaS, GuanXY, LiuM. PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Molecular Cancer, 2021, 20(1): 20
CrossRef Google scholar
YongC, StewartGD, FrezzaC. Oncometabolites in renal cancer. Nature Reviews Nephrology, 2020, 16(3): 156-172
CrossRef Google scholar
ZhuC, BogueMA, LimDS, HastyP, RothDB. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell, 1996, 86(3): 379-389
CrossRef Google scholar
Funding
National Natural Science Foundation of China(82003114); Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0487)

Accesses

Citations

Detail

Sections
Recommended

/