Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma

Jiahua Lv , Pengcheng Gong , Gongwei Jia , Wen Li

Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (5) : 197 -209.

PDF
Genome Instability & Disease ›› 2024, Vol. 5 ›› Issue (5) : 197 -209. DOI: 10.1007/s42764-024-00138-4
Review Article

Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma

Author information +
History +
PDF

Abstract

Clear cell renal cell carcinoma (ccRCC) predominantly originates from renal tubular epithelial cells and displays resistance to conventional chemotherapy and radiation therapy. Multi-omics studies have delineated the intimate correlation between the molecular characteristics of ccRCC and chromosomal alterations, suggesting that interventions targeting DNA damage repair (DDR) could potentially enhance patient prognosis. This comprehensive review encompasses ccRCC epidemiology, clinical classification, diagnosis, and therapeutic strategies, with a focus on its molecular mechanisms and tumor microenvironment (TME). Special emphasis is placed on the role of DDR in ccRCC development, summarizing the latest advances in our understanding of key pathways, including mismatch repair, base excision repair, nucleotide excision repair, non-homologous end joining, and homologous recombination repair. Furthermore, the review addresses the challenges associated with current treatment approaches, such as the adaptability and resistance of ccRCC to vascular endothelial growth factor (VEGF) inhibitors and mTOR pathway inhibitors, while also exploring emerging strategies for targeting DDR in ccRCC.

Cite this article

Download citation ▾
Jiahua Lv, Pengcheng Gong, Gongwei Jia, Wen Li. Targeted DNA damage repair: old mechanisms and new opportunities in clear cell renal cell carcinoma. Genome Instability & Disease, 2024, 5(5): 197-209 DOI:10.1007/s42764-024-00138-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdemikanraAF, OyewoleOM, OlayiwolaAO. Common hotspots of cancer chemotherapy. Genome Instability & Disease, 2023, 4(3): 181-196

[2]

AmaroF, PisoeiroC, ValenteMJ, BastosML, de PinhoG, CarvalhoP, PintoJ. Sunitinib versus Pazopanib Dilemma in Renal Cell Carcinoma: New insights into the in vitro metabolic impact, efficacy, and Safety. International Journal of Molecular Sciences, 2022, 23(17): 9898

[3]

ApostolouZ, ChatzinikolaouG, StratigiK, GarinisGA. Nucleotide excision repair and transcription-Associated Genome Instability. BioEssays: News and Reviews in Molecular Cellular and Developmental Biology, 2019, 41(4): e1800201

[4]

Aragon-ChingJB. Balancing efficacy and quality of life measurements among metastatic renal cell carcinoma (RCC) studies. Oncoscience, 2021, 8: 40-45

[5]

Au, L., Hatipoglu, E., Robert de Massy, M., Litchfield, K., Beattie, G., Rowan, A., Schnidrig, D., Thompson, R., Byrne, F., Horswell, S., Fotiadis, N., Hazell, S., Nicol, D., Shepherd, S. T. C., Fendler, A., Mason, R., Del Rosario, L., Edmonds, K., & Lingard, K. (2021).… TRACERx Renal Consortium. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell, 39(11), 1497–1518.e11. https://doi.org/10.1016/j.ccell.2021.10.001

[6]

BarataPC, RiniBI. Treatment of renal cell carcinoma: Current status and future directions. CA: A Cancer Journal for Clinicians, 2017, 67(6): 507-524

[7]

BeardWA, HortonJK, PrasadR, WilsonSH. Eukaryotic base excision repair: New approaches Shine light on mechanism. Annual Review of Biochemistry, 2019, 88: 137-162

[8]

BergmannL, MauteL, GuschmannM. Temsirolimus for advanced renal cell carcinoma. Expert Review of Anticancer Therapy, 2014, 14(1): 9-21

[9]

BleeAM, GallagherKS, KimHS, KimM, KharatSS, TrollCR, D’SouzaA, ParkJ, NeuferPD, SchärerOD, ChazinWJ. XPA tumor variant leads to defects in NER that sensitize cells to cisplatin. NAR Cancer, 2024, 6(1): zcae013

[10]

BraunDA, HouY, BakounyZ, FicialM, Sant’ AngeloM, FormanJ, Ross-MacdonaldP, BergerAC, JegedeOA, ElaginaL, SteinharterJ, SunM, Wind-RotoloM, PignonJC, CherniackAD, LichtensteinL, NeubergD, CatalanoP, FreemanGJ, ChoueiriTK. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nature Medicine, 2020, 26(6): 909-918

[11]

BrugarolasJ. Molecular genetics of clear-cell renal cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2014, 32(18): 1968-1976

[12]

BuiTM, Butin-IsraeliV, WiesolekHL, ZhouM, RehringJF, WiesmüllerL, WuJD, YangGY, HanauerSB, SebagJA, SumaginR. Neutrophils alter DNA Repair Landscape to Impact Survival and shape distinct therapeutic phenotypes of Colorectal Cancer. Gastroenterology, 2021, 161(1): 225-238e15

[13]

CaraccioloD, RiilloC, Di MartinoMT, TagliaferriP, TassoneP. Alternative non-homologous End-Joining: Error-prone DNA repair as Cancer’s Achilles’ Heel. Cancers, 2021, 13(6): 1392

[14]

CarducciMA. Flashback foreword: Pazopanib in Renal Cell Carcinoma and overall survival with Sunitinib Versus Interferon-α in metastatic renal cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2023, 41(11): 1955-1956

[15]

ChabanonRM, MorelD, EychenneT, Colmet-DaageL, BajramiI, DorvaultN, GarridoM, MeisenbergC, LambA, NgoC, HopkinsSR, RoumeliotisTI, JounyS, HénonC, Kawai-KawachiA, AstierC, KondeA, Del NeryE, MassardC, Postel-VinayS. PBRM1 Deficiency confers synthetic lethality to DNA repair inhibitors in Cancer. Cancer Research, 2021, 81(11): 2888-2902

[16]

ChangHHY, PannunzioNR, AdachiN, LieberMR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 2017, 18(8): 495-506

[17]

ChangWS, ShenTC, LiaoJM, TsaiYT, HsiaTC, WuHC, TsaiCW, BauDT. Significant contribution of DNA repair human 8-Oxoguanine DNA N-Glycosylase 1 genotypes to renal cell carcinoma. OncoTargets and Therapy, 2020, 13: 1583-1591

[18]

ChiKN, RathkopfD, SmithMR, EfstathiouE, AttardG, OlmosD, LeeJY, SmallEJ, Pereira de Santana GomesAJ, RoubaudG, SaadM, ZurawskiB, SakaloV, MasonGE, FrancisP, WangG, WuD, DiorioB, Lopez-GitlitzA. Niraparib and Abiraterone acetate for metastatic castration-resistant prostate Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2023, 41(18): 3339-3351

[19]

ChoueiriTK, KaelinWG. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nature Medicine, 2020, 26(10): 1519-1530

[20]

de VelascoG, MiaoD, VossMH, HakimiAA, HsiehJJ, TannirNM, TamboliP, ApplemanLJ, RathmellWK, Van AllenEM, ChoueiriTK. Tumor Mutational load and Immune parameters across metastatic renal cell Carcinoma Risk groups. Cancer Immunology Research, 2016, 4(10): 820-822

[21]

DeBerardinisRJ. Tumor Microenvironment, Metabolism, and Immunotherapy. The New England Journal of Medicine, 2020, 382(9): 869-871

[22]

DelahuntB, EbleJN, EgevadL, SamaratungaH. Grading of renal cell carcinoma. Histopathology, 2019, 74(1): 4-17

[23]

DengL, WangF, LuanQ, LiuW, TengJ, BanY. Ultrasound diagnosis of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion in children and adolescents. Current Medical Imaging, 2023

[24]

DingL, KimHJ, WangQ, KearnsM, JiangT, OhlsonCE, LiBB, XieS, LiuJF, StoverEH, HowittBE, BronsonRT, LazoS, RobertsTM, FreemanGJ, KonstantinopoulosPA, MatulonisUA, ZhaoJJ. PARP inhibition elicits STING-Dependent Antitumor immunity in Brca1-Deficient ovarian Cancer. Cell Reports, 2018, 25(11): 2972-2980e5

[25]

DoigKD, FellowesAP, FoxSB. Homologous recombination Repair Deficiency: An overview for pathologists. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc, 2023, 36(3): 100049

[26]

FengC, DingG, JiangH, DingQ, WenH. Loss of MLH1 confers resistance to PI3Kβ inhibitors in renal clear cell carcinoma with SETD2 mutation. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 2015, 36(5): 3457-3464

[27]

Fernandez-LeiroR, Bhairosing-KokD, KunetskyV, LaffeberC, WinterwerpHH, GroothuizenF, FishA, LebbinkJHG, FriedhoffP, SixmaTK, LamersMH. The selection process of licensing a DNA mismatch for repair. Nature Structural & Molecular Biology, 2021, 28(4): 373-381

[28]

FishelR. Mismatch repair. The Journal of Biological Chemistry, 2015, 290(44): 26395-26403

[29]

FizaziK, PiulatsJM, ReaumeMN, OstlerP, McDermottR, GingerichJR, PintusE, SridharSS, BamburyRM, EmmeneggerU, LindbergH, MorrisD, NolèF, StaffurthJ, RedfernC, SáezMI, AbidaW, DaugaardG, HeidenreichATRITON3 Investigators. Rucaparib or Physician’s choice in metastatic prostate Cancer. The New England Journal of Medicine, 2023, 388(8): 719-732

[30]

FuQ, XuL, WangY, JiangQ, LiuZ, ZhangJ, ZhouQ, ZengH, TongS, WangT, QiY, HuB, FuH, XieH, ZhouL, ChangY, ZhuY, DaiB, ZhangW, XuJ. Tumor-associated macrophage-derived Interleukin-23 interlinks kidney Cancer glutamine addiction with Immune Evasion. European Urology, 2019, 75(5): 752-763

[31]

GedY, ChaimJL, DiNataleRG, KnezevicA, KotechaRR, CarloMI, LeeCH, FosterA, FeldmanDR, TeoMY, IyerG, ChanT, PatilS, MotzerRJ, HakimiAA, VossMH. DNA damage repair pathway alterations in metastatic clear cell renal cell carcinoma and implications on systemic therapy. Journal for Immunotherapy of Cancer, 2020, 8(1): e000230

[32]

GiacosaS, PilletC, SéraudieI, GuyonL, WallezY, RoelantsC, BattailC, EvrardB, ChalmelF, BaretteC, SoleilhacE, FauvarqueMO, FranquetQ, SarrazinC, PeilleronN, FiardG, LongJA, DescotesJL, CochetC, FilholO. Cooperative Blockade of CK2 and ATM kinases drives apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS overproduction. Cancers, 2021, 13(3): 576

[33]

GongW, YangR, WangZ. DNA methylation regulator-based signature for predicting clear cell renal cell carcinoma prognosis. American Journal of Translational Research, 2023, 15(4): 2443-2459

[34]

GrayRE, HarrisGT. Renal cell carcinoma: Diagnosis and management. American Family Physician, 2019, 99(3): 179-184

[35]

GuoE, WuC, MingJ, ZhangW, ZhangL, HuG. The clinical significance of DNA damage repair signatures in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2020, 11: 593039

[36]

GuoY, FanB, LiM. PARP molecular functions and applications of PARP inhibitors in cancer treatment. Genome Instability & Disease, 2023, 4(3): 137-153

[37]

GuptaN, MatsumotoT, HiratsukaK, Garcia SaizE, GalichonP, MiyoshiT, SusaK, TatsumotoN, YamashitaM, MorizaneR. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Science Translational Medicine, 2022, 14(634): eabj4772

[38]

HagiwaraM, FushimiA, MatsumotoK, OyaM. The significance of PARP1 as a biomarker for Predicting the response to PD-L1 blockade in patients with PBRM1-mutated Clear Cell Renal Cell Carcinoma. European Urology, 2022, 81(2): 145-148

[39]

HakimiAA, OstrovnayaI, RevaB, SchultzN, ChenYB, GonenM, LiuH, TakedaS, VossMH, TickooSK, ReuterVE, RussoP, ChengEH, SanderC, MotzerRJ, HsiehJJccRCC Cancer Genome Atlas (KIRC TCGA) Research Network investigators. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: A report by MSKCC and the KIRC TCGA research network. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2013, 19(12): 3259-3267

[40]

HakimiAA, TickooSK, JacobsenA, SarungbamJ, SfakianosJP, SatoY, MorikawaT, KumeH, FukayamaM, HommaY, ChenYB, SankinA, ManoR, ColemanJA, RussoP, OgawaS, SanderC, HsiehJJ, ReuterVE. TCEB1-mutated renal cell carcinoma: A distinct genomic and morphological subtype. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc, 2015, 28(6): 845-853

[41]

HasanovE, JonaschE. MK-6482 as a potential treatment for Von Hippel-Lindau disease-associated clear cell renal cell carcinoma. Expert Opinion on Investigational Drugs, 2021, 30(5): 495-504

[42]

HenskeEP, ChengL, HakimiAA, ChoueiriTK, BraunDA. Chromophobe renal cell carcinoma. Cancer Cell, 2023, 41(8): 1383-1388

[43]

HsiehJJ, PurdueMP, SignorettiS, SwantonC, AlbigesL, SchmidingerM, HengDY, LarkinJ, FicarraV. Renal cell carcinoma. Nature Reviews Disease Primers, 2017, 3: 17009

[44]

HuJ, WangSG, HouY, ChenZ, LiuL, LiR, LiN, ZhouL, YangY, WangL, WangL, YangX, LeiY, DengC, LiY, DengZ, DingY, KuangY, YaoZ, ChenK. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nature Genetics, 2024, 56(3): 442-457

[45]

HussmannJA, LingJ, RavisankarP, YanJ, CirincioneA, XuA, SimpsonD, YangD, BothmerA, Cotta-RamusinoC, WeissmanJS, AdamsonB. Mapping the genetic landscape of DNA double-strand break repair. Cell, 2021, 184(22): 5653-5669e25

[46]

JahangirM, YazdaniO, KahriziMS, SoltanzadehS, JavididashtbayazH, MivefroshanA, IlkhaniS, EsbatiR. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): A rapidly evolving strategy. Cancer Cell International, 2022, 22(1): 401

[47]

JiF, ZhangF, ZhangM, LongK, XiaM, LuF, LiE, ChenJ, LiJ, ChenZ, JingL, JiaS, YangR, HuZ, GuoZ. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway. Journal of Hematology & Oncology, 2021, 14(1): 152

[48]

JiangYL, KroskyDJ, SeipleL, StiversJT. Uracil-directed ligand tethering: An efficient strategy for uracil DNA glycosylase (UNG) inhibitor development. Journal of the American Chemical Society, 2005, 127(49): 17412-17420

[49]

JingX, QinX, LiuH, LiuH, WangH, QinJ, ZhangY, CaoS, FanX. DNA damage response alterations in clear cell renal cell carcinoma: Clinical, molecular, and prognostic implications. European Journal of Medical Research, 2024, 29(1): 107

[50]

JobertL, SkjeldamHK, DalhusB, GalashevskayaA, VågbøCB, BjøråsM, NilsenH. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Molecular Cell, 2013, 49(2): 339-345

[51]

JonaschE, FutrealPA, DavisIJ, BaileyST, KimWY, BrugarolasJ, GiacciaAJ, KurbanG, PauseA, FrydmanJ, ZuritaAJ, RiniBI, SharmaP, AtkinsMB, WalkerCL, RathmellWK. State of the science: An update on renal cell carcinoma. Molecular Cancer Research: MCR, 2012, 10(7): 859-880

[52]

JonaschE, HasanovE, CornPG, MossT, ShawKR, StovallS, MarcottV, GanB, BirdS, WangX, DoKA, AltamiranoPF, ZuritaAJ, DoyleLA, LaraPN, TannirNM. A randomized phase 2 study of MK-2206 versus everolimus in refractory renal cell carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2017, 28(4): 804-808

[53]

JonaschE, WalkerCL, RathmellWK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nature Reviews Nephrology, 2021, 17(4): 245-261

[54]

KangTH. Circadian rhythm of NER and ATR pathways. Biomolecules, 2021, 11(5): 715

[55]

KanuN, GrönroosE, MartinezP, BurrellRA, GohY, BartkovaX, Maya-MendozaJ, MistríkA, RowanM, PatelAJ, RabinowitzH, EastA, WilsonP, SantosG, McGranahanCR, GulatiN, GerlingerS, BirkbakM, JoshiNJ, SwantonT. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Oncogene, 2015, 34(46): 5699-5708

[56]

KarpovaY, GuoD, MakhovP, HainesAM, MarkovDA, KolenkoV, TulinAV. Poly(ADP)-Ribosylation inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers, 2021, 13(19): 4973

[57]

KaushikAK, TarangeloA, BoroughsLK, RagavanM, ZhangY, WuCY, LiX, AhumadaK, ChiangJC, TcheuyapVT, SaatchiF, DoQN, YongC, RosalesT, StevensC, RaoAD, FaubertB, PachnisP, ZachariasLG, DeBerardinisRJ. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. Science Advances, 2022, 8(50): eabp8293

[58]

KrishnaC, DiNataleRG, KuoF, SrivastavaRM, VuongL, ChowellD, GuptaS, VanderbiltC, PurohitTA, LiuM, KanslerE, NixonBG, ChenYB, MakarovV, BlumKA, AttallaK, WengS, SalmansML, GolkaramM, HakimiAA. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell, 2021, 39(5): 662-677e6

[59]

KrokanHE, BjøråsM. Base excision repair. Cold Spring Harbor Perspectives in Biology, 2013, 5(4): a012583

[60]

LaiY, LiZ, LuZ, ZhengH, ChenC, LiuC, YangY, TangF, HeZ. Roles of DNA damage repair and precise targeted therapy in renal cancer (review). Oncology Reports, 2022, 48(6): 213

[61]

Le PageC, AmuzuS, RahimiK, GotliebW, RagoussisJ, ToninPN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Seminars in Cancer Biology, 2021, 77: 110-126

[62]

LebraudE, PinnaG, SiberchicotC, DepagneJ, BussoD, FantiniD, IrbahL, RobeskaE, KratassioukG, RavanatJL, EpeB, RadicellaJP, CampalansA. Chromatin recruitment of OGG1 requires cohesin and mediator and is essential for efficient 8-oxoG removal. Nucleic Acids Research, 2020, 48(16): 9082-9097

[63]

LeeJB, ChoWK, ParkJ, JeonY, KimD, LeeSH, FishelR. Single-molecule views of MutS on mismatched DNA. Dna Repair, 2014, 20: 82-93

[64]

LiX, HeyerWD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research, 2008, 18(1): 99-113

[65]

LiC, ZouR, ZhangH, WangY, QiuB, QiuS, WangW, XuY. Upregulation of phosphoinositide 3-kinase prevents sunitinib-induced cardiotoxicity in vitro and in vivo. Archives of Toxicology, 2019, 93(6): 1697-1712

[66]

LiaoC, HuL, ZhangQ. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nature Reviews Urology, 2024

[67]

LinehanWM, RickettsCJ. The Cancer Genome Atlas of renal cell carcinoma: Findings and clinical implications. Nature Reviews Urology, 2019, 16(9): 539-552

[68]

LongZ, SunC, TangM, WangY, MaJ, YuJ, WeiJ, MaJ, WangB, XieQ, WenJ. Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma. Cell Discovery, 2022, 8(1): 68

[69]

LutzSZ, UllrichA, HäringHU, UllrichS, GerstF. Sunitinib specifically augments glucose-induced insulin secretion. Cellular Signalling, 2017, 36: 91-97

[70]

MacKenzieMJ, RiniBI, ElsonP, SchwandtA, WoodL, TrinkhausM, BjarnasonG, KnoxJ. Temsirolimus in VEGF-refractory metastatic renal cell carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2011, 22(1): 145-148

[71]

MarteijnJA, LansH, VermeulenW, HoeijmakersJHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews Molecular Cell Biology, 2014, 15(7): 465-481

[72]

McRonaldFE, MorrisMR, GentleD, WinchesterL, BabanD, RagoussisJ, ClarkeNW, BrownMD, KishidaT, YaoM, LatifF, MaherER. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Molecular Cancer, 2009, 8: 31

[73]

MetcalfJL, BradshawPS, KomosaM, GreerSN, MeynS, OhhM. K63-ubiquitylation of VHL by SOCS1 mediates DNA double-strand break repair. Oncogene, 2014, 33(8): 1055-1065

[74]

MonteiroFSM, SoaresA, RizzoA, SantoniM, MollicaV, GrandeE, MassariF. The role of immune checkpoint inhibitors (ICI) as adjuvant treatment in renal cell carcinoma (RCC): A systematic review and meta-analysis. Clinical Genitourinary Cancer, 2023, 21(3): 324-333

[75]

MullinsEA, RodriguezAA, BradleyNP, EichmanBF. Emerging roles of DNA glycosylases and the base excision repair pathway. Trends in Biochemical Sciences, 2019, 44(9): 765-781

[76]

NaJC, NagayaN, RhaKH, HanWK, KimIY. DNA damage response pathway alteration in locally Advanced clear-cell renal-cell carcinoma is Associated with a poor outcome. Clinical Genitourinary Cancer, 2019, 17(4): 299-305e1

[77]

NickersonML, JaegerE, ShiY, DurocherJA, MahurkarS, ZaridzeD, MatveevV, JanoutV, KollarovaH, BenckoV, NavratilovaM, Szeszenia-DabrowskaN, MatesD, MukeriaA, HolcatovaI, SchmidtLS, ToroJR, KaramiS, HungR, MooreLE. Improved identification of Von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2008, 14(15): 4726-4734

[78]

Nieto MorenoN, OlthofAM, SvejstrupJQ. Transcription-coupled nucleotide excision repair and the Transcriptional Response to UV-Induced DNA damage. Annual Review of Biochemistry, 2023, 92: 81-113

[79]

NiuS, LiuK, XuY, PengC, YuY, HuangQ, WuS, CuiB, HuangY, MaX, ZhangX, WangB. Genomic Landscape of Chinese clear cell renal cell carcinoma patients with venous tumor Thrombus identifies chromosome 9 and 14 deletions and related immunosuppressive microenvironment. Frontiers in Oncology, 2021, 11: 646338

[80]

OrtegaJ, LeeGS, GuL, YangW, LiGM. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Research, 2021, 31(5): 542-553

[81]

Pal, S. K., Tran, B., Haanen, J. B. A. G., Hurwitz, M. E., Sacher, A., Tannir, N. M., Budde, L. E., Harrison, S. J., Klobuch, S., Patel, S. S., Meza, L., Dequeant, M. L., Ma, A., He, Q. A., Williams, L. M., Keegan, A., Gurary, E. B., Dar, H., Karnik, S., & Srour, S. A. (2024). CD70-Targeted allogeneic CAR T-Cell therapy for Advanced Clear Cell Renal Cell Carcinoma. Cancer Discovery, OF1–OF14. https://doi.org/10.1158/2159-8290.CD-24-0102

[82]

PantelidouC, SonzogniO, De Oliveria TaveiraM, MehtaAK, KothariA, WangD, VisalT, LiMK, PintoJ, CastrillonJA, CheneyEM, BouwmanP, JonkersJ, RottenbergS, GuerrieroJL, WulfGM, ShapiroGI. PARP inhibitor efficacy depends on CD8 + T-cell recruitment via Intratumoral STING pathway activation in BRCA-Deficient models of triple-negative breast Cancer. Cancer Discovery, 2019, 9(6): 722-737

[83]

PasquiA, BoddiA, CampanacciDA, ScocciantiG, BerniniA, GrassoD, GambaleE, ScolariF, PalchettiI, PalombaA, FancelliS, CalimanE, AntonuzzoL, PillozziS. Alteration of the Nucleotide Excision Repair (NER) pathway in soft tissue sarcoma. International Journal of Molecular Sciences, 2022, 23(15): 8360

[84]

Peña-LlopisS, Vega-Rubín-de-CelisS, LiaoA, LengN, Pavía-JiménezA, WangS, YamasakiT, ZhrebkerL, SivanandS, SpenceP, KinchL, HambuchT, JainS, LotanY, MargulisV, SagalowskyAI, SummerourPB, KabbaniW, WongSWW, BrugarolasJ. BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 2012, 44(7): 751-759

[85]

PengL, LiangJ, WangQ, ChenG. A DNA damage repair gene signature Associated with Immunotherapy Response and Clinical Prognosis in Clear Cell Renal Cell Carcinoma. Frontiers in Genetics, 2022, 13: 798846

[86]

ProszA, DuanH, TiszaV, SahgalP, TopkaS, KlusGT, BörcsökJ, SztupinszkiZ, HanlonT, DiossyM, VizkeletiL, StormoenDR, CsabaiI, PappotH, VijaiJ, OffitK, RiedT, SethiN, MouwKW, SzallasiZ. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. Scientific Reports, 2023, 13(1): 20567

[87]

RathmellWK, RumbleRB, Van VeldhuizenPJ, Al-AhmadieH, EmamekhooH, HaukeRJ, LouieAV, MilowskyMI, MolinaAM, RoseTL, SivaS, ZaorskyNG, ZhangT, QamarR, KungelTM, LewisB, SingerEA. Management of metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2022, 40(25): 2957-2995

[88]

ReinfeldBI, RathmellWK, KimTK, RathmellJC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cellular & Molecular Immunology, 2022, 19(1): 46-58

[89]

RenW, XueB, ChenM, LiuL, ZuX. Low expression of ATM indicates a poor prognosis in Clear Cell Renal Cell Carcinoma. Clinical Genitourinary Cancer, 2019, 17(3): e433-e439

[90]

RiniBI, CampbellSC, EscudierB. Renal cell carcinoma. Lancet (London England), 2009, 373(9669): 1119-1132

[91]

SancarA, TangMS. Nucleotide excision repair. Photochemistry and Photobiology, 1993, 57(5): 905-921

[92]

SangL, DongR, LiuR, HaoQ, BaiW, SunJ. Caenorhabditis elegans NHR-14/HNF4α regulates DNA damage-induced apoptosis through cooperating with cep-1/p53. Cell Communication and Signaling: CCS, 2022, 20(1): 135

[93]

SantosM, LanillosJ, Roldan-RomeroJM, CaleirasE, Montero-CondeC, CascónA, ClimentMA, AngueraG, HernandoS, LaínezN, RobledoM, RoblesL, de VelascoG, García-DonasJ, Rodriguez-AntonaC. Prevalence of pathogenic germline variants in patients with metastatic renal cell carcinoma. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2021, 23(4): 698-704

[94]

SatoY, YoshizatoT, ShiraishiY, MaekawaS, OkunoY, KamuraT, ShimamuraT, Sato-OtsuboA, NagaeG, SuzukiH, NagataY, YoshidaK, KonA, SuzukiY, ChibaK, TanakaH, NiidaA, FujimotoA, TsunodaT, OgawaS. Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genetics, 2013, 45(8): 860-867

[95]

ScullyR, PandayA, ElangoR, WillisNA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019, 20(11): 698-714

[96]

SeidelP, RubarthA, ZodelK, PeighambariA, NeumannF, FederkielY, HuangH, HoefflinR, AdlesicM, WittC, HoffmannDJ, MetzgerP, LindemannRK, ZenkeFT, SchellC, BoerriesM, von ElverfeldtD, ReichardtW, FolloM, FrewIJ. ATR represents a therapeutic vulnerability in clear cell renal cell carcinoma. JCI Insight, 2022, 7(24): e156087

[97]

SiegelRL, GiaquintoAN, JemalA. Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 2024, 74(1): 12-49

[98]

TanSK, WelfordSM. Lipid in Renal Carcinoma: Queen Bee to target?. Trends in Cancer, 2020, 6(6): 448-450

[99]

Topolska-WośAM, SugitaniN, CordobaJJ, MeurL, MeurKVL, KimRA, YeoHS, RosenbergJE, HammelD, SchärerM, ChazinWJ. A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Research, 2020, 48(4): 2173-2188

[100]

TurJ, WebsterRM. The renal cell carcinoma drug market. Nature Reviews Drug Discovery, 2024, 23(1): 16-17

[101]

WangXS, LeeBJ, ZhaS. The recent advances in non-homologous end-joining through the lens of lymphocyte development. Dna Repair, 2020, 94: 102874

[102]

WangC, WangY, HongT, YeJ, ChuC, ZuoL, ZhangJ, CuiX. Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death and Differentiation, 2021, 28(3): 932-951

[103]

WhitakerAM, StarkWJ, FreudenthalBD. Processing oxidatively damaged bases at DNA strand breaks by APE1. Nucleic Acids Research, 2022, 50(16): 9521-9533

[104]

WuJ, WangH, RickettsCJ, YangY, MerinoMJ, ZhangH, ShiG, GanH, LinehanWM, ZhuY, YeD. Germline mutations of renal cancer predisposition genes and clinical relevance in Chinese patients with sporadic, early-onset disease. Cancer, 2019, 125(7): 1060-1069

[105]

WuG, LiT, ChenY, YeS, ZhouS, TianX, AnwaierA, ZhuS, XuW, HaoX, YeD, ZhangH. Deciphering glutamine metabolism patterns for malignancy and tumor microenvironment in clear cell renal cell carcinoma. Clinical and Experimental Medicine, 2024, 24(1): 152

[106]

XiangZ, LiuH, HuY. DNA damage repair and cancer immunotherapy. Genome Instability & Disease, 2023, 4(4): 210-226

[107]

XieH, SongJ, GodfreyJ, RiscalR, SkuliN, NissimI, SimonMC. Glycogen metabolism is dispensable for tumour progression in clear cell renal cell carcinoma. Nature Metabolism, 2021, 3(3): 327-336

[108]

XuL, ZhuY, ChenL, AnH, ZhangW, WangG, LinZ, XuJ. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Annals of Surgical Oncology, 2014, 21(9): 3142-3150

[109]

YangXD, KongFE, QiL, LinJX, YanQ, LoongJHC, XiSY, ZhaoY, ZhangY, YuanYF, MaNF, MaS, GuanXY, LiuM. PARP inhibitor Olaparib overcomes Sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Molecular Cancer, 2021, 20(1): 20

[110]

YongC, StewartGD, FrezzaC. Oncometabolites in renal cancer. Nature Reviews Nephrology, 2020, 16(3): 156-172

[111]

ZhuC, BogueMA, LimDS, HastyP, RothDB. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell, 1996, 86(3): 379-389

Funding

National Natural Science Foundation of China(82003114)

Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0487)

AI Summary AI Mindmap
PDF

356

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/