Study on preparation technology and properties of calcium based CO2 absorbent from acid leaching steel slag

Ruiying Wang , Tao Qi , Hongfeng Ji , Gang Du , Canhua Li , Shujing Zhu , Jiamao Li , Chen Zhao

Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (3) : 100140

PDF (4403KB)
Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (3) : 100140 DOI: 10.1016/j.gerr.2025.100140
research-article

Study on preparation technology and properties of calcium based CO2 absorbent from acid leaching steel slag

Author information +
History +
PDF (4403KB)

Abstract

Currently, more and more industrial carbon emissions lead to a significant increase in greenhouse gases, which has a significant impact on global climate change. Therefore, the storage and reuse of carbon dioxide is an important issue in modern society. In this paper, calcium based CO2 absorbent was prepared from converter slag by acetic acid extraction and modification of steel slag. The study investigated the effects of parameters in indirect acetic acid leaching, including acetic acid concentration, leaching time, solid-to-liquid ratio, and temperature, on the elemental content in the adsorbent. It also compared the cyclic adsorbent stability of calcium-based adsorbents with commercial calcium oxide. The results indicated that the optimal technical parameters were: acetic acid concentration 1 mol/L, leaching time 40 min, solid-liquid ratio of 1:10, leaching temperature of 40°C, achieving an extraction rate of 88.05% for calcium elements. Its initial CO2 adsorbent capacity is 0.51 gCO2/gadsorbent, and the CO2 adsorbent capacity after 20 cycles is 0.202 gCO2/gadsorbent, and the inactivation rate is 60.39%. Compared with AR CaO, the adsorbent has more ideal CO2 capture ability.

Keywords

Carbon dioxide / Acetic acid / Converter slag / Calcium based absorbent / Thermo-gravimetric analysis

Cite this article

Download citation ▾
Ruiying Wang, Tao Qi, Hongfeng Ji, Gang Du, Canhua Li, Shujing Zhu, Jiamao Li, Chen Zhao. Study on preparation technology and properties of calcium based CO2 absorbent from acid leaching steel slag. Green Energy and Resources, 2025, 3(3): 100140 DOI:10.1016/j.gerr.2025.100140

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Ruiying Wang: Writing - original draft. Tao Qi: Formal analysis. Hongfeng Ji: Data curation. Gang Du: Data curation. Canhua Li: Funding acquisition. Shujing Zhu: Writing - review & editing, Data curation. Jiamao Li: Data curation. Chen Zhao: Data curation.

Funding

Fund Project: Supported by Anhui Provincial Central Leading Local Science and Technology Development Special Project (202107d06050012) and Anhui University Graduate Science Research Project (YJS2202110333).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Bilen, M., Altiner, M., Yildirim, M., 2018. Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. Part. Sci. Technol. 36 (3), 368-377. https://doi.org/10.1080/02726351.2016.1267285.

[2]

Bobicki, E.R., Liu, Q.X., Xu, Z.H., et al., 2012. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 38 (2), 302-320. https://doi.org/10.1016/j.pecs.2011.11.002.

[3]

Cai, B., Cao, L., Lei, Y., et al., 2021. China's carbon emission pathway under the carbon neutrality target. China Popul. Resour. Environ. 31 (1), 7-14. https://doi.org/10.12062/cpre.20210101.

[4]

Chen, R., Wu, G.X., Li, L.L., et al., 2019. Carbonation reaction of slag from steel refining for CO2 sequestration in the absence and presence of water vapor. Sci. Adv. Mater. 11 (5), 749-755. https://doi.org/10.1166/sam.2019.3495.

[5]

Chen, S., Dai, J., Qin, C., et al., 2022. Adsorption and desorption equilibrium of Li4SiO4- based sorbents for high-temperature CO2 capture. Chem. Eng. J. 429, 132236-132240. https://doi.org/10.1016/j.cej.2021.132236.

[6]

Costa, G., Baciocchi, R., Polettini, A., et al., 2007. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ. Monit. Assess. 135 (1/2/3), 55-75. https://doi.org/10.1007/s10661-007-9704-4.

[7]

Costa, L.C.B., Carvalho, V.R., Ferreira, L.C., et al., 2024. Utilizing steel slag to prolong the durability of reinforced concrete: corrosion resistance mechanisms. J. Build. Eng. 98, 111505. https://doi.org/10.1016/j.jobe.2024.111505.

[8]

Fang, D., Zhang, L., Zou, L., et al., 2021. Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics. Greenhouse Gases: Sci. Technol. 11 (5), 924-938. https://doi.org/10.1002/ghg.2103.

[9]

Gao, W., Zhou, W., Yux, L., et al., 2023. Comprehensive utilization of steel slag: a review. Powder Technol. 422, 118449. https://doi.org/10.1016/j.powtec.2023.118449.

[10]

Gao, Z., Zhao, Q., Tao, M., et al., 2024. Recent research progress on the direct carbon capture of steel slag to prepare building materials. Green Smart Mining Eng. 1 (4), 387-395. https://doi.org/10.1016/j.gsme.2024.11.003.

[11]

Geng, Y.Q., Guo, Y.X., Fan, B., et al., 2021. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification. J. Fuel Chem. Technol. 49 (7), 998-1013. https://doi.org/10.1016/S1872-5813(21)60040-3.

[12]

Guo, H., Nan, Y., Kou, X., et al., 2019. Research on doping modification and morphology control of calcium-based CO2 sorbents. Chem. Ind. Eng. Prog. 38 (1), 457-466. https://doi.org/10.16085/j.issn.1000-6613.2018-1340.

[13]

GB175- 2023, 2024. "General Portland Cement" is released. Res. Appl. Build. Mater. 2024 (1), 7. https://doi.org/10.3969/j.issn.1009-9441.2024.01.003(2024).

[14]

Kashiwaya, Y., Tauchi, S., Nomura, T., et al., 2020. Kinetic analysis considering particle size distribution on Ca elution from slags in CaO-SiO2-MgO-Al2O3-Fe2O3 system. ISIJ Int. 60 (12), 2859-2869. https://doi.org/10.2355/isijinternational.ISIJINT-2020-265.

[15]

Ko, M.S., Chen, Y.L., Jiang, J.H., 2015. Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Constr. Build. Mater. 98, 286-293. https://doi.org/10.1016/j.conbuildmat.2015.08.051.

[16]

Kong, X., Chen, R., Li, L., et al., 2019. Study on CO2 adsorption reaction of converter slag. Steelmaking 35 (2), 5-11.

[17]

Lasheras, A., StrHle, J., Galloy, A., et al., 2011. Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. Int. J. Greenh. Gas Control 5 (4), 686-693. https://doi.org/10.1016/j.ijggc.2011.01.005.

[18]

Li, C., Zhang, Y., Zhang, K., et al., 2023. Research on resource utilization of CO2 in steel industry. Materials Reports 37 (S2), 468-473.

[19]

Li, Q., Wang, J., She, X., et al., 2025. Feasibility and comprehensive evaluation of the application of different low-carbon technologies in the iron and steel industry. Fuel 381, 133434. https://doi.org/10.1016/j.fuel.2024.133434.

[20]

Liu, W., Teng, L., Rohani, S., et al., 2021. CO2 mineral carbonation using industrial solid wastes: a review of recent developments. Chem. Eng. J. 416, 129093. https://doi.org/10.1016/j.cej.2021.129093.

[21]

Myers, C.A., Nakagaki, T., Akutsu, K., 2019. Quantification of the CO2 mineralization potential of ironmaking and steelmaking slags under direct gas-solid reactions in flue gas. Int. J. Greenh. Gas Control 87, 100-111. https://doi.org/10.1016/j.ijggc.2019.05.021.

[22]

National, Development and Reform, Commission, 2021. Guiding opinions on the comprehensive utilization of bulk solid waste during the 14th five year plan period. Gold Sci. Technol. 29 (2), 286-286.

[23]

Pan, S.Y., Adhikari, R., Chen, Y.H., et al., 2016. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J. Clean. Prod. 137, 617-631. https://doi.org/10.1016/j.jclepro.2016.07.112.

[24]

Polettini, A., Pomi, R., Stramazzo, A., 2016. CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects. J. Environ. Manag. 167, 185-195. https://doi.org/10.1016/j.jenvman.2015.11.042.

[25]

Revathy, T.D.R., Palanivelu, K., Ramachandran, A., et al., 2016. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ. Sci. Pollut. Control Ser. 23 (8), 7349-7359. https://doi.org/10.1007/s11356-015-5893-5.

[26]

Rong, N., Shi, X., Wang, S., et al., 2025. Optimized acid leaching synthesis and steam regeneration of the steel slag-derived calcium-based sorbent for enhanced CO2 capture. J. Clean. Prod. 488, 144673. https://doi.org/10.1016/j.jclepro.2025.144673.

[27]

Sang, M., Lee, J., 2017. Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. J. Ind. Eng. Chem. 112 (10), 165-771. https://doi.org/10.1016/j.jiec.2017.04.030.

[28]

Song, C., 2006. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115 (1-4), 2-32. https://doi.org/10.1016/j.cattod.2006.02.029.

[29]

Sun, J., Liu, W., Hu, Y., et al., 2018. Acidification optimization and granulation of a steel- slag-derived sorbent for CO2 capture. Chem. Eng. Technol. 41 (10), 2077-2086. https://doi.org/10.1002/ceat.201700573.

[30]

Thonemann, N., Zacharopoulos, L., Fromme, F., et al., 2022. Environmental impacts of carbon capture and utilization by mineral carbonation: a systematic literature review and meta life cycle assessment. J. Clean. Prod. 332, 130067. https://doi.org/10.1016/j.jclepro.2021.130067.

[31]

Tian, S.C., Jiang, J.G., Chen, X.J., et al., 2013. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants. ChemSusChem 6 (12), 2348-2355. https://doi.org/10.1002/cssc.201300436.

[32]

Tian, S., Jiang, J., Yan, F., et al., 2016. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry. Green Chem. 18 (14), 4022-4031. https://doi.org/10.1039/c6gc00400h.

[33]

Tu, M., Zhao, H., Lei, Z., et al., 2015. Aqueous carbonation of steel slag: a kinetics study. ISIJ Int. 55 (11), 2509-2514. https://doi.org/10.2355/isijinternational.ISIJINT-2015-142.

[34]

Ukwattage, N.L., Ranjith, P.G., Li, X., 2017. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97, 15-22. https://doi.org/10.1016/j.measurement.2016.10.057.

[35]

Wang, J.Y., Zhong, M., Wu, P.F., et al., 2021. A review of the application of steel slag in CO2 fixation. ChemBioEng Rev. 8 (3), 189-199. https://doi.org/10.1002/cben.202000021.

[36]

Wang, Z., Yu, Q., Li, C., et al., 2021. Preparation, structure and performance of steel slag- manganese slag compound fertilizer. China Metallurgy 31 (1), 75-80. https://doi.org/10.13228/j.boyuan.issn1006-9356.20200336.

[37]

White, A., Cannell, M., Friend, A.D., 2010. CO2 stabilization, climate change and the terrestrial carbon sink. Glob. Change Biol. 6 (7), 817-833. https://doi.org/10.1046/j.1365-2486.2000.00358.x.

[38]

Zhu, B., Zhou, J., Lv, X., et al., 2020. Effect of ZnO on reaction of coke with CO2. J. Iron Steel Res. 32 (4), 273-280. https://doi.org/10.13228/j.boyuan.issn1001-0963.20190180.

[39]

Zhu, X., Lei, G., Hou, L., et al., 2025. Experimental and numerical study of steel tubes filled with steel slag-based artificial aggregate (SA-CFST) under lateral impact load. Constr. Build. Mater. 458, 139532. https://doi.org/10.1016/j.conbuildmat.2024.139532.

AI Summary AI Mindmap
PDF (4403KB)

465

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/