Microbial biomass conversion for hydrogen production: A review

Muhamad Reda Galih Pangestu , Shaikh Abdur Razzak , Shihab Uddin

Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (3) : 100131

PDF (1101KB)
Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (3) : 100131 DOI: 10.1016/j.gerr.2025.100131
research-article

Microbial biomass conversion for hydrogen production: A review

Author information +
History +
PDF (1101KB)

Abstract

The escalating demand for clean and sustainable energy sources has propelled hydrogen to the forefront of alternative fuel research. Microbial biomass conversion, a bio-based process utilizing microorganisms to convert organic matter into hydrogen, presents a promising avenue for achieving this goal. This review provides a comprehensive overview of possible microbial biomass conversion methods, including both light-dependent and light-independent methods, and compares their hydrogen production rates (HPRs). Light-dependent methods such as photo-fermentation offer HPRs exceeding 3 m3/dm3, suggesting highly efficient hydrogen generation possibilities. However, most rely on indirect processes or specific light conditions, potentially hindering H2 production. Dark fermentation (DF) demonstrates significantly higher HPRs, up to 12 m3/d/m3, with no light requirements, making it a strong contender for large-scale production. Microbial electrolysis cells (MECs) show even greater HPRs of up to 72 m3/d/m3, competing favorably in hydrogen generation feasibility. Despite promising advancements, challenges remain in scaling up these processes for commercial viability. While current research achieves high HPRs, reactor volumes are typically below 1 L. This review explores opportunities and challenges associated with scaling up, particularly focusing on integrating DF and MECs. Combining these methods holds promise for enhancing stability and achieving efficient energy recovery.

Keywords

Microbial biomass / Dark-fermentation / Photo-fermentation / Hydrogen production

Cite this article

Download citation ▾
Muhamad Reda Galih Pangestu, Shaikh Abdur Razzak, Shihab Uddin. Microbial biomass conversion for hydrogen production: A review. Green Energy and Resources, 2025, 3(3): 100131 DOI:10.1016/j.gerr.2025.100131

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Muhamad Reda Galih Pangestu: Writing - original draft, Software, Resources, Data curation, Conceptualization. Shaikh Abdur Razzak: Writing - review & editing, Supervision, Investigation, Data curation. Shihab Uddin: Writing - review & editing, Writing - original draft, Supervision, Software, Resources, Project administration, Investigation, Data curation, Conceptualization.

Declaration of competing interest

The authors assert that they don't have any identifiable conflicts.

Acknowledgement

The authors gratefully acknowledge to the department of Bioengineering, and Interdisciplinary Research Center for Bio Systems and Machines, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

References

[1]

Abdel Daiem, M.M., Said, N., 2022. Energetic, economic, and environmental perspectives of power generation from residual biomass in Saudi Arabia. Alex. Eng. J. 61 (5), 3351-3364. https://doi.org/10.1016/J.AEJ.2021.08.049.

[2]

Ahmed, S.F., Rafa, N., Mofijur, M., Badruddin, I.A., Inayat, A., Ali, M.S., Farrok, O., Yunus Khan, T.M., 2021. Biohydrogen production from biomass sources: Metabolic pathways and economic analysis. Front. Energy Res. 9, 753878. https://doi.org/10.3389/FENRG.2021.753878/BIBTEX.

[3]

Ajayi-Banji, A.A., Rahman, S., 2024. Impact of agitation and non-agitation on microbiota and reactor performance in anaerobic digestion. Green Energy Resou. 2 (1), 100056. https://doi.org/10.1016/J.GERR.2024.100056.

[4]

Alqarzaee, F., Al Bari, M.A., Razzak, S.A., Uddin, S., 2024. Biomass-based hydrogen production towards renewable energy sources:an advance study. In: EmergentMaterials. Springer Nature. https://doi.org/10.1007/s42247-024-00931-7.

[5]

An, D., Li, Q., Wang, X., Yang, H., Guo, L., 2014. Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int. J. Hydrogen Energy 39 (35), 19928-19936. https://doi.org/10.1016/J.IJHYDENE.2014.10.014.

[6]

Arun, J., SundarRajan, P.S., Grace Pavithra, K., Priyadharsini, P., Shyam, S., Goutham, R., Hoang Le, Q., Pugazhendhi, A., 2024. New insights into microbial electrolysis cells (MEC) and microbial fuel cells (MFC) for simultaneous wastewater treatment and green fuel (hydrogen) generation. Fuel 355, 129530. https://doi.org/10.1016/J.FUEL.2023.129530.

[7]

Bisaillon, A., Turcot, J., Hallenbeck, P.C., 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energy 31 (11), 1504-1508. https://doi.org/10.1016/J.IJHYDENE.2006.06.016.

[8]

Boileau, C., Auria, R., Davidson, S., Casalot, L., Christen, P., Liebgott, P.-P., Combet- Blanc, Y., 2016. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth. Biotechnol. Biofuels 9 (1), 269. https://doi.org/10.1186/s13068-016-0678-8.

[9]

Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295 (5554), 483-485. https://doi.org/10.1126/science.1066771.

[10]

Bond, D.R., Lovley, D.R., 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69 (3), 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003.

[11]

Bretschger, O., Obraztsova, A., Sturm, C.A., Chang, I.S., Gorby, Y.A., Reed, S.B., Culley, D.E., Reardon, C.L., Barua, S., Romine, M.F., Zhou, J., Beliaev, A.S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.-H., Fredrickson, J.K., Nealson, K.H., 2007. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73 (21), 7003-7012. https://doi.org/10.1128/AEM.01087-07.

[12]

Brosseau, J.D., Kosaric, N., Zajic, J.E., 1980. The effect of pH on hydrogen production with Citrobacter intermedius. Biotechnol. Lett. 2 (3), 93-98. https://doi.org/10.1007/BF00142032/METRICS.

[13]

Budhijanto, B.P.P., 2024. Sustainable hydrogen production from oil palm trunk biomass in Indonesia: a techno-economic study. AGRARIS: J. Agribus. Rural Dev. Res. 10 (1), 105-119. https://doi.org/10.18196/AGRARIS.V10I1.152.

[14]

Cai, W., Zhu, X., Kumar, R., Zhu, Z., Ye, J., Zhao, J., 2024. Catalytic pyrolysis of biomass waste using montmorillonite-supported ultrafine iron nanoparticles for enhanced biooil yield and quality. Green Energy Resou. 2 (3), 100085. https://doi.org/10.1016/J.GERR.2024.100085.

[15]

Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42 (9), 3401-3406. https://doi.org/10.1021/es8001822.

[16]

Cao, G.L., Zhao, L., Wang, A.J., Wang, Z.Y., Ren, N.Q., 2014. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol. Biofuels 7 (1), 1-13. https://doi.org/10.1186/1754-6834-7-82/TABLES/5.

[17]

Cao, Y., Liu, H., Liu, W., Guo, J., Xian, M., 2022. Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microb. Cell Fact. 21 (1), 166. https://doi.org/10.1186/s12934-022-01893-3.

[18]

Chader, S., Hacene, H., Agathos, S.N., 2009. Study of hydrogen production by three strains of chlorella isolated from the soil in the Algerian sahara. Int. J. Hydrogen Energy 34 (11), 4941-4946. https://doi.org/10.1016/j.ijhydene.2008.10.058.

[19]

Chen, W.M., Tseng, Z.J., Lee, K.S., Chang, J.S., 2005. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 30 (10), 1063-1070. https://doi.org/10.1016/J.IJHYDENE.2004.09.008.

[20]

Cheng, S., Logan, B.E., 2011. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour. Technol. 102 (3), 3571-3574. https://doi.org/10.1016/j.biortech.2010.10.025.

[21]

Chin, H.L., Chen, Z.S., Chou, C.P., 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol. Prog. 19 (2), 383-388. https://doi.org/10.1021/BP0200604.

[22]

Chookaew, T., Prasertsan, P., Ren, Z.J., 2014. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. N. Biotech. 31 (2), 179-184. https://doi.org/10.1016/j.nbt.2013.12.004.

[23]

Cohen-Bazire, G., Sistrom, W.R., Stanier, R.Y., 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49 (1), 25-68. https://doi.org/10.1002/jcp.1030490104.

[24]

Collet, C., Adler, N., Schwitzguébel, J.P., Péringer, P., 2004. Hydrogen production by clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy 29 (14), 1479-1485. https://doi.org/10.1016/J.IJHYDENE.2004.02.009.

[25]

Dai, F., Zhang, S., Luo, Y., Wang, K., Liu, Y., Ji, X., 2023. Recent progress on hydrogenrich syngas production from coal gasification. Processes 11 (6), 1765. https://doi.org/10.3390/PR11061765, 2023, Vol. 11, Page 1765.

[26]

Deka, T.J., Osman, A.I., Baruah, D.C., Rooney, D.W., 2023. Assessment of bioenergy and syngas generation in India based on estimation of agricultural residues. Energy Rep. 9, 3771-3786. https://doi.org/10.1016/J.EGYR.2023.02.054.

[27]

Dhar, K., Venkateswarlu, K., Megharaj, M., 2023. Anoxygenic phototrophic purple nonsulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J. Microbiol. Biotechnol. 39 (10), 1-18. https://doi.org/10.1007/S11274-023-03729-7, 2023 39:10.

[28]

Dikshit, P.K., Poddar, M.K., Chakma, S., 2023. Biohydrogen production from waste substrates and its techno-economic analysis. Hydrogen Econ.: Processes, Supply Chain, Life Cycle Analy. Energy Trans. Sustain. 399-429. https://doi.org/10.1016/B978-0-323-99514-6.00015-7.

[29]

El sharkawy, K., Elsamadony, M., Gar Alalm, M., Afify, H., 2019. Bio-H2 conversion of wastewater via hybrid dark/photo fermentation reactor. J. Eng. Res. 3 (3), 50-54.

[30]

Elgarahy, A.M., Eloffy, M.G., Hammad, A., Saber, A.N., El-Sherif, D.M., Mohsen, A., Abouzid, M., Elwakeel, K.Z., 2022. Hydrogen production from wastewater, storage, economy, governance and applications: a review. Environ. Chem. Lett. 20 (6), 3453-3504. https://doi.org/10.1007/S10311-022-01480-3, 2022 20:6.

[31]

Faruque, M.O., Uddin, S., Hossain, M.M., Hossain, S.M.Z., Shafiquzzaman, M., Razzak, S.A., 2024. A comprehensive review on microalgae-driven heavy metals removal from industrial wastewater using living and nonliving microalgae. J. Hazardous Mater. Adv. 16. https://doi.org/10.1016/j.hazadv.2024.100492.

[32]

Elsevier, B.V. Fudge, T., Bulmer, I., Bowman, K., Pathmakanthan, S., Gambier, W., Dehouche, Z., Al-, Salem, S.M., Constantinou, A., 2021. Microbial electrolysis cells for decentralised wastewater treatment:the next steps. Water 13 (4). https://doi.org/10.3390/w13040445.

[33]

Gabriel, K.S., El-Emam, R.S., Zamfirescu, C., 2022. Technoeconomics of large-scale clean hydrogen production - a review. Int. J. Hydrogen Energy 47 (72), 30788-30798. https://doi.org/10.1016/J.IJHYDENE.2021.10.081.

[34]

Gautam, R., Nayak, J.K., Ress, N.V., Steinberger-Wilckens, R., Ghosh, U.K., 2023. Biohydrogen production through microbial electrolysis cell: structural components and influencing factors. Chem. Eng. J. 455, 140535. https://doi.org/10.1016/J.CEJ.2022.140535.

[35]

Ghiasian, M., Ghiasian, M., 2019. Biophotolysis-Based Hydrogen Production by Cyanobacteria, pp. 161-184. https://doi.org/10.1007/978-3-030-14463-0_5.

[36]

Grattieri, M., 2020. Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochem. Photobiol. Sci. 19 (4), 424-435. https://doi.org/10.1039/C9PP00470J.

[37]

Guo, K., Prévoteau, A., Rabaey, K., 2017. A novel tubular microbial electrolysis cell for high rate hydrogen production. J. Power Sources 356, 484-490. https://doi.org/10.1016/j.jpowsour.2017.03.029.

[38]

Gupta, S., Fernandes, A., Lopes, A., Grasa, L., Salafranca, J., 2024. Photo-fermentative bacteria used for hydrogen production. Appl. Sci. 14 (3), 1191. https://doi.org/10.3390/APP14031191, 2024, Vol. 14, Page 1191.

[39]

Gurubel Tun, K.J., León-Becerril, E., García-Depraect, O., 2025. Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes. Green Energy Resou. 3 (1), 100112. https://doi.org/10.1016/j.gerr.2024.100112.

[40]

Hamilton, C., Hiligsmann, S., Beckers, L., Masset, J., Wilmotte, A., Thonart, P., 2010. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI 952 in batch, sequenced-batch and semicontinuous operating mode. Int. J. Hydrogen Energy 35 (3), 1089-1098. https://doi.org/10.1016/J.IJHYDENE.2009.10.073.

[41]

Heidrich, E.S., Edwards, S.R., Dolfing, J., Cotterill, S.E., Curtis, T.P., 2014. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour. Technol. 173, 87-95. https://doi.org/10.1016/j.biortech.2014.09.083.

[42]

Hitam, C.N.C., Jalil, A.A., 2023. A review on biohydrogen production through photofermentation of lignocellulosic biomass. Biomass Conver. Biorefin. 13 (10), 8465-8483. https://doi.org/10.1007/S13399-020-01140-Y/METRICS.

[43]

Honarmandrad, Z., Kucharska, K., Gębicki, J., 2022. Processing of biomass prior to hydrogen fermentation and post-fermentative broth management. Molecules 27 (Issue 21). https://doi.org/10.3390/molecules27217658.

[44]

MDPI. Howarth, R.W., Jacobson, M.Z., 2021. How green is blue hydrogen? Energy Sci. Eng. 9 (10), 1676-1687. https://doi.org/10.1002/ESE3.956.

[45]

Irfan, F., Tasnim, N., Razzak, S.A., Uddin, S., 2025. Advances in capturing carbon and producing bioplastics through the microalgal approach towards a sustainable future: a review. J. Clean. Prod. 486. https://doi.org/10.1016/j.jclepro.2024.144576.

[46]

Elsevier Ltd. Jain, R., Gupta, T., Agarwal, C., Meena, S.S., Panwar, N.L., Jain, S.K., 2022. Bio-hydrogen production through dark fermentation: an overview. Biomass Conver. Biorefin. https://doi.org/10.1007/s13399-022-03282-7.

[47]

Javed, M.A., Zafar, A.M., Aly Hassan, A., Zaidi, A.A., Farooq, M., El Badawy, A., Lundquist, T., Mohamed, M.M.A., Al-Zuhair, S., 2022. The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. J. Environ. Chem. Eng. 10 (1), 107003. https://doi.org/10.1016/J.JECE.2021.107003.

[48]

Jayabalan, T., Matheswaran, M., Naina Mohammed, S., 2019. Biohydrogen production from sugar industry effluents using nickel based electrode materials in microbial electrolysis cell. Int. J. Hydrogen Energy 44 (32), 17381-17388. https://doi.org/10.1016/j.ijhydene.2018.09.219.

[49]

Jayabalan, T., Matheswaran, M., Radhakrishnan, T.K., Naina Mohamed, S., 2021. Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Bioresour. Technol. 320, 124284. https://doi.org/10.1016/j.biortech.2020.124284.

[50]

Kadier, A., Jain, P., Lai, B., Kalil, M.S., Kondaveeti, S., Fahad Saud Alabbosh, K., Abu- Reesh, I.M., Mohanakrishna, G., 2020. Biorefinery Perspectives of Microbial Electrolysis Cells (Mecs) for Hydrogen and Valuable Chemicals Production Through Wastewater Treatment.

[51]

Katuri, K., Ali, M., Saikaly, P., 2023. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects item type article. https://doi.org/10.1016/j.copbio.2019.03.007.

[52]

Khalil, Md, E., Jain, A., Das, E., Yang, K.L., Rajagopalan, G., 2023. A robust and efficient bioprocess of hydrogen production from crude glycerol by Clostridium beijerinckii G117. Int. J. Hydrogen Energy 48 (21), 7604-7620. https://doi.org/10.1016/j.ijhydene.2022.11.177.

[53]

Khongkliang, P., Jehlee, A., Kongjan, P., Reungsang, A., O-Thong, S., 2019. High efficient biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis under thermophilic condition. Int. J. Hydrogen Energy 44 (60), 31841-31852. https://doi.org/10.1016/j.ijhydene.2019.10.022.

[54]

Kim, M.-S., Lee, D.-Y., 2010. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour. Technol. 101 (1), S48-S52. https://doi.org/10.1016/j.biortech.2009.03.040.

[55]

Koo, B., Jung, S.P., 2022. Trends and perspectives of microbial electrolysis cell technology for ultimate green hydrogen production. https://doi.org/10.4491/KSEE.2022.44.10.383.

[56]

Krujatz, F., Härtel, P., Helbig, K., Haufe, N., Thierfelder, S., Bley, T., Weber, J., 2015. Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation. Bioresour. Technol. 175, 82-90. https://doi.org/10.1016/J.BIORTECH.2014.10.061.

[57]

Lee, H.S., Xin, W., Katakojwala, R., Venkata Mohan, S., Tabish, N.M.D., 2022. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - a review. Bioresour. Technol. 363, 127934. https://doi.org/10.1016/J.BIORTECH.2022.127934.

[58]

Liu, H., Guo, W., Fan, Z., Huang, F., Liu, S., 2023. Comparative life cycle energy, water consumption and carbon emissions analysis of deep in-situ gasification based coal-tohydrogen with carbon capture and alternative routes. J. Clean. Prod. 426, 139129. https://doi.org/10.1016/J.JCLEPRO.2023.139129.

[59]

Lu, H., Zhang, G., He, S., Zhao, R., Zhu, D., 2021. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World J. Microbiol. Biotechnol. 37 (9), 1-15. https://doi.org/10.1007/S11274-021-03133-Z/FIGURES/6.

[60]

Lu, L., Ren, N., Xing, D., Logan, B.E., 2009. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 24 (10), 3055-3060. https://doi.org/10.1016/J.BIOS.2009.03.024.

[61]

Ma, H., Zheng, X., Yang, H., 2018. Enhancement on hydrogen production performance of Rhodobacter sphaeroides HY 01 by overexpressing fdxN. Int. J. Hydrogen Energy 43 (36), 17082-17090. https://doi.org/10.1016/J.IJHYDENE.2018.07.101.

[62]

Mahfud, M., Qadariyah, L., Haqqyana, H., Aswie, V., 2024. Optimization bio-oil production from chlorella sp. through microwave-assisted pyrolysis using response surface methodology. Green Energy Resou. 2 (1), 100057. https://doi.org/10.1016/J.GERR.2024.100057.

[63]

Marone, A., Ayala-Campos, O.R., Trably, E., Carmona-Martínez, A.A., Moscoviz, R., Latrille, E., Steyer, J.-P., Alcaraz-Gonzalez, V., Bernet, N., 2017. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int. J. Hydrogen Energy 42 (3), 1609-1621. https://doi.org/10.1016/j.ijhydene.2016.09.166.

[64]

Marshall, C.W., 2009. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ. Sci. 2 (6), 699. https://doi.org/10.1039/b823237g.

[65]

Megia, P.J., Vizcaino, A.J., Calles, J.A., Carrero, A., 2021. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 35 (20), 16403-16415. https://doi.org/10.1021/ACS.ENERGYFUELS.1C02501.

[66]

Melitos, G., Voulkopoulos, X., Zabaniotou, A., 2021. Waste to sustainable biohydrogen production via photo-fermentation and biophotolysis-A systematic review. Renew. Energy Environ. Sustain. 6, 45. https://doi.org/10.1051/REES/2021047.

[67]

Monir, M.U., Aziz, A.A., Ahmed, M.T., Hasan, Md Y., 2022. Chapter 11 - hydrogen energy-potential in developing countries. In: KhanI. (Ed.), Renewable Energy and Sustainability. Elsevier, pp. 299-325. https://doi.org/10.1016/B978-0-323-88668-0.00013-9.

[68]

Muhire, F., Turyareeba, D., Adaramola, M.S., Nantongo, M., Atukunda, R., Olyanga, A.M., 2024. Drivers of green energy transition: a review. Green Energy Resou. 2 (4), 100105. https://doi.org/10.1016/j.gerr.2024.100105.

[69]

Nawaz, A., Haddad, H., Shah, M.A., Uddin, S., Hossain, M.M., Abdur Razzak, S., 2024. Fueling sustainability: co-Pyrolysis of microalgae biomass and waste plastics for renewable energy and waste mitigation. Biomass Bioenergy 187. https://doi.org/10.1016/j.biombioe.2024.107303.

[70]

Elsevier Ltd. Nazeer, Z., Fernando, E.Y., 2022. A novel growth and isolation medium for exoelectrogenic bacteria. Enzym. Microb. Technol. 155, 109995. https://doi.org/10.1016/J.ENZMICTEC.2022.109995.

[71]

Niu, K., Zhang, X., Tan, W.S., Zhu, M.L., 2010. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 35 (1), 71-80. https://doi.org/10.1016/J.IJHYDENE.2009.10.071.

[72]

Ntaikou, I., Gavala, H.N., Lyberatos, G., 2009. Modeling of fermentative hydrogen production from the bacterium ruminococcus albus: definition of metabolism and kinetics during growth on glucose. Int. J. Hydrogen Energy 34 (9), 3697-3709. https://doi.org/10.1016/J.IJHYDENE.2009.02.057.

[73]

Ofremu, G.O., Raimi, B.Y., Yusuf, S.O., Dziwornu, B.A., Nnabuife, S.G., Eze, A.M., Nnajiofor, C.A., 2024. Exploring the relationship between climate change, air pollutants and human health: impacts, adaptation, and mitigation strategies. Green Energy Resou., 100074 https://doi.org/10.1016/J.GERR.2024.100074.

[74]

Oh, Y.K., Kim, H.J., Park, S., Kim, M.S., Ryu, D.D.Y., 2008. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Int. J. Hydrogen Energy 33 (5), 1471-1482. https://doi.org/10.1016/J.IJHYDENE.2007.09.032.

[75]

Ohta, S., Miyamoto, K., Miura, Y., 1987. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol. 83 (4), 1022-1026. https://doi.org/10.1104/pp.83.4.1022.

[76]

Oni, A.O., Anaya, K., Giwa, T., Di Lullo, G., Kumar, A., 2022. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manag. 254, 115245. https://doi.org/10.1016/J.ENCONMAN.2022.115245.

[77]

Osman, A.I., Elgarahy, A.M., Eltaweil, A.S., Abd El-Monaem, E.M., El-Aqapa, H.G., Park, Y., Hwang, Y., Ayati, A., Farghali, M., Ihara, I., Al-Muhtaseb, A.H., Rooney, D.W., Yap, P.S., Sillanpää M., 2023a. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ. Chem. Lett. 21 (3), 1315-1379. https://doi.org/10.1007/S10311-023-01581-7, 2023 21:3.

[78]

Osman, A.I., Lai, Z.Y., Farghali, M., Yiin, C.L., Elgarahy, A.M., Hammad, A., Ihara, I., Al- Fatesh, A.S., Rooney, D.W., Yap, P.-S., 2023b. Optimizing biomass pathways to bioenergy and biochar application in electricity generation, biodiesel production, and biohydrogen production. Environ. Chem. Lett. 21 (5), 2639-2705. https://doi.org/10.1007/s10311-023-01613-2.

[79]

Osman, A.I., Mehta, N., Elgarahy, A.M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A.H., Rooney, D.W., 2021. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20 (1), 153-188. https://doi.org/10.1007/S10311-021-01322-8, 2021 20:1.

[80]

Osman, A.I., Nasr, M., Lichtfouse, E., Farghali, M., Rooney, D.W., 2024. Hydrogen, ammonia and methanol for marine transportation. Environ. Chem. Lett. 22 (5), 2151-2158. https://doi.org/10.1007/s10311-024-01757-9.

[81]

Pangestu, M.R.G., Malaibari, Z., Muhammad, A., Al-Rowaili, F.N., Zahid, U., 2024. Comprehensive review on methane pyrolysis for sustainable hydrogen production. Energy Fuels 38 (15), 13514-13538. https://doi.org/10.1021/acs.energyfuels.4c01551.

[82]

Park, S.G., Rajesh, P.P., Sim, Y.U., Jadhav, D.A., Noori, M.T., Kim, D.H., Al- Qaradawi, S.Y., Yang, E., Jang, J.K., Chae, K.J., 2022. Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Rep. 8, 2726-2746. https://doi.org/10.1016/J.EGYR.2022.01.198.

[83]

Peng, S., 2023. Alkaline water electrolysis. In: PengS. (Ed.), Electrochemical Hydrogen Production from Water Splitting: Basic, Materials and Progress. Springer Nature, Singapore, pp. 57-68. https://doi.org/10.1007/978-981-99-4468-2_3.

[84]

Pham, T.H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., Höfte, M., Verstraete, W., Rabaey, K., 2008. Metabolites produced by pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 77 (5), 1119-1129. https://doi.org/10.1007/s00253-007-1248-6.

[85]

Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., Verstraete, W., 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70 (9), 5373-5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004.

[86]

Rahman, S.N.A., Masdar, M.S., 2015. Overview of biohydrogen production technologies and application in fuel cell. https://doi.org/10.5923/c.chemistry.201501.03.

[87]

Reda Galih Pangestu, M., Zahid, U., 2024a. Techno-economic analysis of integrating methane pyrolysis and reforming technology for low-carbon ammonia. Energy Convers. Manag. 322, 119125. https://doi.org/10.1016/j.enconman.2024.119125.

[88]

eda Galih Pangestu, M., Zahid, U., 2024b. Techno-economic analysis of integrating methane pyrolysis and reforming technology for low-carbon ammonia. Energy Convers. Manag. 322, 119125. https://doi.org/10.1016/J.ENCONMAN.2024.119125.

[89]

Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E., 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75 (11), 3673-3678. https://doi.org/10.1128/AEM.02600-08.

[90]

Ringeisen, B.R., Ray, R., Little, B., 2007. A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sources 165 (2), 591-597. https://doi.org/10.1016/j.jpowsour.2006.10.026.

[91]

Rossi, R., Baek, G., E. Logan, B., 2022. Vapor-fed cathode microbial electrolysis cells with closely spaced electrodes enables greatly improved performance. Environ. Sci. Technol. 56 (2), 1211-1220. https://doi.org/10.1021/acs.est.1c06769.

[92]

Rozendal, R., Hamelers, H., Euverink, G., Metz, S., Buisman, C., 2006. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31 (12), 1632-1640. https://doi.org/10.1016/j.ijhydene.2005.12.006.

[93]

Selembo, P.A., Perez, J.M., Lloyd, W.A., Logan, B.E., 2009. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy 34 (13), 5373-5381. https://doi.org/10.1016/j.ijhydene.2009.05.002.

[94]

Shahid, M.Z., Kim, J.K., 2023. Design and economic evaluation of a novel amine-based CO2 capture process for SMR-Based hydrogen production plants. J. Clean. Prod. 402, 136704. https://doi.org/10.1016/J.JCLEPRO.2023.136704.

[95]

Shi, Y., Weimer, P.J., Ralph, J., 1997. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1. Antonie van Leeuwenhoek, Intern. J. General Mole. Microbiology 72 (2), 101-109. https://doi.org/10.1023/A:1000256221938/METRICS.

[96]

Singh, H., Paritosh, K., Vivekanand, V., Pareek, N., 2023. Microorganism-assisted biohydrogen production and bioreactors. Chem. Eng. Technol. 46 (2), 204-217. https://doi.org/10.1002/ceat.202000561.

[97]

Sittijunda, S., Baka, S., Jariyaboon, R., Reungsang, A., Imai, T., Kongjan, P., 2022. Integration of dark fermentation with microbial electrolysis cells for biohydrogen and methane production from distillery wastewater and glycerol waste Co-Digestion. Fermentation 8 (10), 537. https://doi.org/10.3390/FERMENTATION8100537, 2022, Vol. 8, Page 537.

[98]

Srivastava, P., García-Quismondo, E., Palma, J., González-Fernández, C., 2023a. Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield: technological competitiveness and challenges. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.04.293.

[99]

Srivastava, P., García-Quismondo, E., Palma, J., González-Fernández, C., 2023b. Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield: technological competitiveness and challenges. Int. J. Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.04.293.

[100]

Srivastava, P., García-Quismondo, E., Palma, J., González-Fernández, C., 2024. Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield: technological competitiveness and challenges. Int. J. Hydrogen Energy 52, 223-239. https://doi.org/10.1016/J.IJHYDENE.2023.04.293.

[101]

Talapko, D., Talapko, J., Erić I., Škrlec, I., 2023. Biological hydrogen production from biowaste using dark fermentation, storage and transportation. Energies 16 (8), 3321.

[102]

Tamburic, B., Zemichael, F.W., Maitland, G.C., Hellgardt, K., 2011. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 36 (13), 7872-7876. https://doi.org/10.1016/j.ijhydene.2010.11.074.

[103]

Tan, K.C., Chua, Y.S., He, T., Chen, P., 2023. Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: a review. Green Energy Resou. 1 (2), 100020. https://doi.org/10.1016/J.GERR.2023.100020.

[104]

Tsygankov, A.A., Fedorov, A.S., Kosourov, S.N., Rao, K.K., 2002. Hydrogen production by Cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol. Bioeng. 80 (7), 777-783. https://doi.org/10.1002/bit.10431.

[105]

Veksha, A., Lu, J., Tsakadze, Z., Lisak, G., 2023. Carbon dioxide capture from biomass pyrolysis gas as an enabling step of biogenic carbon nanotube synthesis and hydrogen recovery. ChemSusChem 16 (13), e202300143. https://doi.org/10.1002/CSSC.202300143.

[106]

Wagner, R.C., Regan, J.M., Oh, S.-E., Zuo, Y., Logan, B.E., 2009. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 43 (5), 1480-1488. https://doi.org/10.1016/j.watres.2008.12.037.

[107]

Wang, A., Sun, D., Cao, G., Wang, H., Ren, N., Wu, W.-M., Logan, B.E., 2011. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour. Technol. 102 (5), 4137-4143. https://doi.org/10.1016/j.biortech.2010.10.137.

[108]

Wang, K., Tester, J.W., 2023. Sustainable management of unavoidable biomass wastes. Green Energy Resou. 1 (1), 100005. https://doi.org/10.1016/j.gerr.2023.100005.

[109]

Wang, W., 2023. Green energy and resources: advancing green and low-carbon development. Green Energy Resou. 1 (1), 100009. https://doi.org/10.1016/j.gerr.2023.100009.

[110]

Wang, Y., Van Le, Q., Yang, H., Lam, S.S., Yang, Y., Gu, H., Sonne, C., Peng, W., 2021. Progress in microbial biomass conversion into green energy. Chemosphere 281. https://doi.org/10.1016/j.chemosphere.2021.130835.

[111]

Zhang, L., Zhou, S., Zhuang, L., Li, W., Zhang, J., Lu, N., Deng, L., 2008. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun. 10 (10), 1641-1643. https://doi.org/10.1016/j.elecom.2008.08.030.

[112]

Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., Peng, Z., 2006. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 21, 2257. https://doi.org/10.1039/b600876c.

[113]

Zhang, X., Qian, X., Xiao, C., Yin, X., Wang, X., Wang, Z., Yu, H., Han, Z., Lin, L., 2024. Advancements in purification and holistic utilization of industrial by-product hydrogen: progress, challenges, and prospects. Green Energy Resou. 2 (4), 100098. https://doi.org/10.1016/J.GERR.2024.100098.

[114]

Zhu, Y., Miao, J., Wang, Y., Liu, D., Zhang, Y., Zhao, X., Hu, J., Wu, C., 2024. Ultra-low carbon dioxide emissions for biomass gasification using air with nearly 100% CO2 capture and conversion. Chem. Eng. J. 484, 149778. https://doi.org/10.1016/J.CEJ.2024.149778.

[115]

Zuo, Y., Xing, D., Regan, J.M., Logan, B.E., 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74 (10), 3130-3137. https://doi.org/10.1128/AEM.02732-07.

[116]

IEA, 2023. ETP Clean Energy Technology Guide - Data Tools - IEA. (n.d.). https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide. (Accessed 19 September 2023).

AI Summary AI Mindmap
PDF (1101KB)

1252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/