Dynamic process of hydrogen flow and spontaneous combustion in tubes featuring different configurations after leakage from 35 and 70 MPa

Qin Huang, Zuo-Yu Sun, Ya-Long Du, Jia-Ying Li

Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (2) : 100127.

PDF(5383 KB)
PDF(5383 KB)
Green Energy and Resources ›› 2025, Vol. 3 ›› Issue (2) : 100127. DOI: 10.1016/j.gerr.2025.100127
Research article

Dynamic process of hydrogen flow and spontaneous combustion in tubes featuring different configurations after leakage from 35 and 70 MPa

Author information +
History +

Abstract

Hydrogen, as a green energy resource, presents a crucial opportunity to reduce emissions and facilitate the transition to sustainable energy, particularly in the shipping industry. The storage pressure for hydrogen gas (like 35 MPa for metal-composite Type III vessels and 70 MPa for polymer-composite Type IV vessels) is prone to leakage or even rupture, and hydrogen could be spontaneously ignited during pressurized leakage; thus, investigating the dynamics of spontaneous hydrogen combustion is essential for safely advancing hydrogen energy in marine applications. This study numerically examined the development of shockwaves and the spontaneous combustion process during pressurized leakage within tubes featuring various configurations (L-shaped and Tshaped, which are commonly found in actual pipelines) at pressures of 35 and 70 MPa. The results indicated that, upon release from the tested pressures, hydrogen would spontaneously ignite within the upstream sections of the tubes beyond the leakage port, with the flame propagating downstream along with the shockwave development. Notably, shockwave and spontaneous combustion characteristics variations differed across the two tube configurations. Velocity measurements showed that values would be lowest near the corner of the L-shaped tube, whereas they would consistently decline downstream in the T-shaped tube. This suggested that measures to mitigate shockwave effects (thus reducing the likelihood of spontaneous combustion) should be implemented in the upstream section of the tubes, regardless of the configuration. Additionally, pressure readings were highest near the corner of the L-shaped tube and showed a consistent decline downstream in the T-shaped tube. Therefore, protective measures addressing stress intensity should focus on the L-shaped tube's corner and the Tshaped tube's upstream section.

Keywords

Hydrogen flow / Spontaneous combustion / Pressurized leakage / L-shape tube / T-shape tube / Numerical simulation

Cite this article

Download citation ▾
Qin Huang, Zuo-Yu Sun, Ya-Long Du, Jia-Ying Li. Dynamic process of hydrogen flow and spontaneous combustion in tubes featuring different configurations after leakage from 35 and 70 MPa. Green Energy and Resources, 2025, 3(2): 100127 https://doi.org/10.1016/j.gerr.2025.100127

References

[1]
Alkhaledi A.N., Batra A., Sampath S., Pilidis P., 2022. Techno-environmental assessment of a hydrogen-fuelled combined-cycle gas turbine for a liquid hydrogen tanker. Energy Rep. 8, 10561-10569. https://doi.org/10.1016/j.egyr.2022.08.202.
[2]
Asahara M., Saburi T., Ando T., Muto T., Takahashi Y., Miyasaka T., 2022. Jet flame sustenance via spontaneous release of high-pressure hydrogen through a seamless tube: relationship between burst pressure and tube length. Fuel 315, 123228. https://doi.org/10.1016/j.fuel.2022.123228.
[3]
Atilhan S., Park S., El-Halwagi M.M., Atilhan M., Moore M., Nielsen R.B., 2021. Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering 31, 100668. https://doi.org/10.1016/j.coche.2020.100668.
[4]
Atiz A., Erden M., Karakilcik H., Karakilcik M., 2024. Integrating renewable energy technologies in green ships for mobile hydrogen, electricity, and freshwater generation. Int. J. Hydrogen Energy 89, 1368-1382. https://doi.org/10.1016/j.ijhydene.2024.09.302.
[5]
Bai X., Hou Y., Yang D., 2021. Choose clean energy or green technology? Empirical evidence from global ships. Transport. Res. E Logist. Transport. Rev. 151, 102364.https://doi.org/10.1016/j.tre.2021.102364.
[6]
Barthelemy H., Weber M., Barbier F., 2017. Hydrogen storage: recent improvements and industrial perspectives. Int. J. Hydrogen Energy 42, 7254-7262. https://doi.org/10.1016/j.ijhydene.2016.03.178.
[7]
Bazhenova T.V., Bragin M.V., Golub V.V., Ivanov M.F., 2007. The shock-wave mechanism of spontaneous ignition of hydrogen under conditions of sudden efflux from reservoir at high pressure. High Temp. 45, 665-672. https://doi.org/10.1134/S0018151X07050148.
[8]
Bragin M.V., Makarov D.V., Molkov V.V., 2013. Pressure limit of hydrogen spontaneous ignition in a T-shaped channel. Int. J. Hydrogen Energy 38, 8039-8052. https://doi.org/10.1016/j.ijhydene.2013.03.030.
[9]
Cao S., Wang X., Wu Z., 2011. Evaluation and prediction of temperature-dependent tensile strength of unidirectional carbon fiber-reinforced polymer composites. J. Reinforc. Plast. Compos. 30, 799-807. https://doi.org/10.1177/0731684411411002.
[10]
Cheng L., Qi L., Tang X., Li X., Chen L., Min W., Mei Z., Gao R., Sun M., Xiao J., Guan Q., Yu M., Sun Z., 2024. Effects of hydrogen cycling on the performance of 70 MPa high-pressure hydrogen storage tank liners formed by different processes. Int. J. Hydrogen Energy 83, 499-511. https://doi.org/10.1016/j.ijhydene.2024.07.345.
[11]
Danebergs J., Deledda S., 2024. Can hydrogen storage in metal hydrides be economically competitive with compressed and liquid hydrogen storage? A technoeconomical perspective for the maritime sector. Int. J. Hydrogen Energy 50, 1040-1054. https://doi.org/10.1016/j.ijhydene.2023.08.313.
[12]
de-Troya J.J., Álvarez C., Fernández-Garrido C., Carral L., 2016. Analysing the possibilities of using fuel cells in ships. Int. J. Hydrogen Energy 41, 2853-2866. https://doi.org/10.1016/j.ijhydene.2015.11.145.
[13]
di Ilio G., Bionda A., Ponzini R., Salvadore F., Cigolotti V., Minutillo M., Georgopoulou C., Mahos K., 2024. Towards the design of a hydrogen-powered ferry for cleaner passenger transport. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.08.434.
[14]
Drube T., Gerlach J., Leach T., Vogel B., Klebanoff L., 2024. Exploring variations in the weight, size and shape of liquid hydrogen tanks for zero-emission fuel-cell vessels. Int. J. Hydrogen Energy 80, 1441-1465. https://doi.org/10.1016/j.ijhydene.2024.06.420.
[15]
Du Y., Sun Z., Huang Q., 2024. Leakage process and spontaneous ignition of hydrogen within a tube after releasing from the storage container with pressures up to 20 MPa. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2024.11.041.
[16]
Duan Q., Xiao H., Gao W., Gong L., Wang Q., Sun J., 2016. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air. Fuel 181, 811-819. https://doi.org/10.1016/j.fuel.2016.05.066.
[17]
Golub V.V., Baklanov D.I., Bazhenova T.V., Bragin M.V., Golovastov S.V., Ivanov M.F., Volodin V.V., 2007. Shock-induced ignition of hydrogen gas during accidental or technical opening of high-pressure tanks. J. Loss Prev. Process. Ind. 20, 439-446. https://doi.org/10.1016/j.jlp.2007.03.014.
[18]
Gong L., Zheng X., Yang S., Yao Y., Xie Y., Mo T., Zhang Y., 2023. Numerical study on the shock evolution and the spontaneous ignition of high-pressure hydrogen during its sudden release into the tubes with different angles. Fuel 331, 125940. https://doi.org/10.1016/j.fuel.2022.125940.
[19]
Guan W., Chen L., Wang Z., Chen J., Ye Q., Fan H., 2024. A 500 kW hydrogen fuel cell-powered vessel: from concept to sailing. Int. J. Hydrogen Energy 89, 1466-1481. https://doi.org/10.1016/j.ijhydene.2024.09.418.
[20]
Güler E., Ergin S., 2024. Investigation of a solid oxide fuel cell integrated into an internal combustion engine with carbon capture for maritime applications. Energy Convers. Manag. 314, 118660. https://doi.org/10.1016/j.enconman.2024.118660.
[21]
Huang Q., Sun Z., Du Y., 2024. Enhancing safety in hydrogen storage: understanding the dynamic process in hydrogen-methane mixtures during the pressurized leakage. Process Saf. Environ. Prot. 192, 1554-1565. https://doi.org/10.1016/j.psep.2024.10.100.
[22]
Ihsan Shahid M., Rao A., Farhan M., Liu Y., Ahmad Salam H., Chen T., Ma F., 2024. Hydrogen production techniques and use of hydrogen in internal combustion engine: a comprehensive review. Fuel 378, 132769. https://doi.org/10.1016/j.fuel.2024.132769.
[23]
Ismail A.M., Ballini F., €Olçer A.I., Alamoush A.S., 2024. Integrating ports into green shipping corridors: drivers, challenges, and pathways to implementation. Mar. Pollut. Bull. 209, 117201. https://doi.org/10.1016/j.marpolbul.2024.117201.
[24]
Jafarzadeh S., Schjølberg I., 2018. Operational profiles of ships in Norwegian waters: an activity-based approach to assess the benefits of hybrid and electric propulsion. Transport. Res. Transport Environ. 65, 500-523. https://doi.org/10.1016/j.trd.2018.09.021.
[25]
Jiang Y., Pan X., Hua M., Wang Z., Zhang T., Wang Q., Li Y., Yu A., Jiang J., 2023. Effect of flow directions in the T-shaped tubes on the shock wave and spontaneous ignition of pressurized hydrogen. Fuel 332, 126054. https://doi.org/10.1016/j.fuel.2022.126054.
[26]
Jiang Y., Pan X., Yan W., Wang Z., Wang Q., Hua M., Jiang J., 2019. Pressure dynamics, self-ignition, and flame propagation of hydrogen jet discharged under high pressure. Int. J. Hydrogen Energy 44, 22661-22670. https://doi.org/10.1016/j.ijhydene.2019.03.268.
[27]
Jin K., Gong L., Zheng X., Han Y., Duan Q., Zhang Y., Sun J., 2023. A visualization investigation on the characteristic and mechanism of spontaneous ignition condition of high-pressure hydrogen during its sudden release into a tube. Int. J. Hydrogen Energy 48, 32169-32178. https://doi.org/10.1016/j.ijhydene.2023.04.342.
[28]
Kesana N.R., Welahettige P., Hansen P.M., Ulleberg Ø., Vågsæther K., 2023. Modelling of fast fueling of pressurized hydrogen tanks for maritime applications. Int. J. Hydrogen Energy 48, 30804-30817. https://doi.org/10.1016/j.ijhydene.2023.04.142.
[29]
Kis D.I., Kókai E., 2024. A review on the factors of liner collapse in type IV hydrogen storage vessels. Int. J. Hydrogen Energy 50, 236-253. https://doi.org/10.1016/j.ijhydene.2023.09.316.
[30]
Kumar M., 2024. Investigation of hydrogen transport properties through the liner material of 70 MPa type IV composite overwrapped pressure vessels. Int. J. Pres. Ves. Pip. 208, 105150. https://doi.org/10.1016/j.ijpvp.2024.105150.
[31]
Li J.C., Xu H., Zhou K., Li J.Q., 2024a. A review on the research progress and application of compressed hydrogen in the marine hydrogen fuel cell power system. Heliyon 10, e25304. https://doi.org/10.1016/j.heliyon.2024.e25304.
[32]
Li X., Zhu C., Liu C., Liu Y., Song J., Liu X., Li J., 2024b. Research on protection methods for 70 MPa on-board Type IV hydrogen storage cylinders under localized fire conditions. Int. J. Hydrogen Energy 50, 992-1005. https://doi.org/10.1016/j.ijhydene.2023.08.130.
[33]
Li Y., Jiang Y., Pan X., Wang Z., Hua M., Wang Q., Ta L., Jiang J., 2021. Effects of the arc-shaped corner on the shock wave and self-ignition induced by sudden release of pressurized hydrogen. Fuel 303, 121294. https://doi.org/10.1016/j.fuel.2021.121294.
[34]
Liu X.Y., Sun Z.Y., Yi Y., 2024. Progress in spontaneous ignition of hydrogen during high-pressure leakage with the considerations of pipeline storage and delivery. Appli. Energy Combust. Sci. 20, 100290. https://doi.org/10.1016/j.jaecs.2024.100290.
[35]
Luo H., Liu L., Nishida K., Zhou W., 2024. Development and utilization on green energy in marine powertrain: challenges and opportunities. Green Energy Resour. 2, 100076. https://doi.org/10.1016/j.gerr.2024.100076.
[36]
Ma X., Li B., Han B., Liu Y., Song C., 2024. Safety discharge strategies of vehiclemounted type III high-pressure hydrogen storage tanks under fire scenarios. Int. J. Hydrogen Energy 93, 1227-1239. https://doi.org/10.1016/j.ijhydene.2024.11.042.
[37]
Mao X., Ying R., Yuan Y., Li F., Shen B., 2021. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship. Int. J. Hydrogen Energy 46, 6857-6872. https://doi.org/10.1016/j.ijhydene.2020.11.158.
[38]
Mehr A.S., Phillips A.D., Brandon M.P., Pryce M.T., Carton J.G., 2024. Recent challenges and development of technical and technoeconomic aspects for hydrogen storage, insights at different scales; A state of art review. Int. J. Hydrogen Energy 70, 786-815. https://doi.org/10.1016/j.ijhydene.2024.05.182.
[39]
Melideo D., Desideri U., 2024. The use of hydrogen as alternative fuel for ship propulsion: a case study of full and partial retrofitting of roll-on/roll-off vessels for short distance routes. Int. J. Hydrogen Energy 50, 1045-1055. https://doi.org/10.1016/j.ijhydene.2023.10.142.
[40]
Otto M., Chagoya K.L., Blair R.G., Hick S.M., Kapat J.S., 2022. Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. J. Energy Storage 55, 105714. https://doi.org/10.1016/j.est.2022.105714.
[41]
Pan X., Wang Q., Yan W., Jiang Y., Wang Z., Xu X., Hua M., Jiang J., 2020. Experimental study on pressure dynamics and self-ignition of pressurized hydrogen flowing into the L-shaped tubes. Int. J. Hydrogen Energy 45, 5028-5038. https://doi.org/10.1016/j.ijhydene.2019.11.161.
[42]
Pan X., Lu L., Zhang T., Jiang Y., Li Y., Wang Z., Hua M., Jiang J., 2023. Effect of the leak port area and tube length on suppression of spontaneous ignition of highpressure hydrogen. J. Energy Storage 74, 109396. https://doi.org/10.1016/j.est.2023.109396.
[43]
Pomaska L., Acciaro M., 2022. Bridging the Maritime-Hydrogen Cost-Gap: real options analysis of policy alternatives. Transport. Res. Transport Environ. 107, 103283. https://doi.org/10.1016/j.trd.2022.103283.
[44]
Ryu B.R., Duong P.A., Kang H., 2023. Comparative analysis of the thermodynamic performances of solid oxide fuel cell-gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels. Int. J. Nav. Archit. Ocean Eng. 15, 100524. https://doi.org/10.1016/j.ijnaoe.2023.100524.
[45]
Santana L., Pinto D.L., Osipov N., Furtado J., Bourguignon F., Marchais P., Madi Y., Besson J., 2024. Study of hydrogen embrittlement in steels using modified pressurized disks. Int. J. Hydrogen Energy 88, 498-514. https://doi.org/10.1016/j.ijhydene.2024.09.165.
[46]
Si L., Cao H., Wang J., 2024. The impact of a low-carbon transport system policy on total factor carbon emission performance: evidence from 283 cities in China. Soc. Econ. Plann. Sci., 102091 https://doi.org/10.1016/j.seps.2024.102091.
[47]
Sun Z.Y., 2023. Hydrogen energy: development prospects, current obstacles and policy suggestions under China’s “Dual Carbon” goals. Chin. J. Urban Environ. Studies 11, 2350006. https://doi.org/10.1142/S2345748123500069.
[48]
Ta L., Wang Z., Zhang B., Jiang Y., Li Y., Wang Q., Zhang T., Hua M., Pan X., Jiang J., 2022. Experimental investigation on shock wave propagation and selfignition of pressurized hydrogen in different three-way tubes. Process Saf. Environ. Prot. 160, 139-152. https://doi.org/10.1016/j.psep.2022.01.075.
[49]
van Biert L., Godjevac M., Visser K., Aravind P.V., 2016. A review of fuel cell systems for maritime applications. J. Power Sources 327, 345-364. https://doi.org/10.1016/j.jpowsour.2016.07.007.
[50]
Wang Q., Pan X., Jiang Y., Wang Z., Li Y., Ta L., Hua M., Jiang J., 2020. Experimental investigation on spontaneous ignition caused by pressurized hydrogen suddenly release into an S-shaped tube. J. Loss Prev. Process. Ind. 68, 104313. https://doi.org/10.1016/j.jlp.2020.104313.
[51]
Wang W., 2023. Green energy and resources: advancing green and low-carbon development. Green Energy Resour. 1, 100009. https://doi.org/10.1016/j.gerr.2023.100009.
[52]
Wang Z., Pan X., Jiang Y., Wang Q., Li Y., Xiao J., Jordan T., Jiang J., 2020a. Experimental study on shock wave propagation and spontaneous ignition induced by high-pressure hydrogen suddenly released into T-shaped tubes. Saf. Sci. 127, 104694. https://doi.org/10.1016/j.ssci.2020.104694.
[53]
Wang Z., Li M., Zhao F., Ji Y., Han F., 2024a. Status and prospects in technical standards of hydrogen-powered ships for advancing maritime zero-carbon transformation. Int. J. Hydrogen Energy 62, 925-946. https://doi.org/10.1016/j.ijhydene.2024.03.083.
[54]
Wang J., Webley P.A., Hughes T.J., 2024b. Thermodynamic modelling of pressurised storage and transportation of liquid hydrogen for maritime export. Int. J. Hydrogen Energy 62, 1273-1285. https://doi.org/10.1016/j.ijhydene.2024.02.285.
[55]
Yamada E., Kitabayashi N., Hayashi A.K., Tsuboi N., 2011. Mechanism of high-pressure hydrogen auto-ignition when spouting into air. Int. J. Hydrogen Energy 36, 2560-2566. https://doi.org/10.1016/j.ijhydene.2010.05.011.
PDF(5383 KB)

Accesses

Citations

Detail

Sections
Recommended

/